OPC Toolbox™
User's Guide

7

MATLAB&SIMULINK

zzzzzz ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

OPC Toolbox™ User's Guide
© COPYRIGHT 2004-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

June 2004
August 2004
October 2004
March 2005
April 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 14)

Revised for Version 1.1 (Release 14+)
Revised for Version 1.1.1 (Release 14SP1)
Revised for Version 1.1.2 (Release 14SP2)
Revised for Version 2.0 (Release 14SP2+)
Revised for Version 2.0.1 (Release 14SP3)
Revised for Version 2.0.2 (Release 2006a)
Revised for Version 2.0.3 (Release 2006Db)
Revised for Version 2.0.4 (Release 2007a)
Revised for Version 2.1 (Release 2007b)
Revised for Version 2.1.1 (Release 2008a)
Revised for Version 2.1.2 (Release 2008b)
Revised for Version 2.1.3 (Release 2009a)
Revised for Version 2.1.4 (Release 2009Db)
Revised for Version 2.1.5 (Release 2010a)
Revised for Version 2.1.6 (Release 2010Db)
Revised for Version 3.0 (Release 2011a)
Revised for Version 3.1 (Release 2011b)
Revised for Version 3.1.1 (Release 2012a)
Revised for Version 3.1.2 (Release 2012b)
Revised for Version 3.2 (Release 2013a)
Revised for Version 3.3 (Release 2013b)
Revised for Version 3.3.1 (Release 2014a)
Revised for Version 3.3.2 (Release 2014b)
Revised for Version 3.3.3 (Release 2015a)
Revised for Version 4.0 (Release 2015b)
Revised for Version 4.0.1 (Release 2016a)
Revised for Version 4.0.2 (Release 2016b)
Revised for Version 4.0.3 (Release 2017a)
Revised for Version 4.0.4 (Release 2017Db)
Revised for Version 4.0.5 (Release 2018a)
Revised for Version 4.0.6 (Release 2018b)
Revised for Version 4.0.7 (Release 2019a)
Revised for Version 4.0.8 (Release 2019b)
Revised for Version 5.0 (Release 2020a)
Revised for Version 5.0.1 (Release 2020b)

Contents

Getting Started

Introduction
OPC Toolbox Product Description 1-2
Overview of OPC, Servers, and the Toolbox 1-3
About OPC Toolbox Software 1-3
About OPC . . . 1-4
OPC SEIVETS . v vttt ittt e e e e e e 1-4
System Requirements 1-5
Get Command-Line FunctionHelp 1-6
Set Up for OPC Toolbox Software 1-7
Preparation Overview 1-7
Set Up for Communicating with OPC DA and OPC HDA Servers 1-7
Install an OPC DA or HDA Simulation Server for OPC Classic Examples
... 1-14
Set Up for Communicating with OPC UA Servers 1-15
Install an OPC UA Simulation Server for OPC UA Examples 1-15
(Optional) Install a Local Discovery Service for OPC UA Server
Discovery Examples i 1-15
Troubleshooting 1-17
Unable to Findan OPC Server, 1-17
“Class not registered” Error, 1-17
Unable to QuerytheServer 1-17
Unable to ConnecttoServer 1-17
UnabletoCreate a Groupiiiiiieiin i, 1-18
Error While Querying Interface 1-18

Quick Start: Using OPC Data Access Functions

2|

Access Data at Command Line 2-2
DA Programming OVEIVIEWt i vttt e e eie e e 2-2
Step 1: Locate Your OPC Data Access Server 2-2
Step 2: Create an OPC Data Access Client Object 2-3
Step 3: Connect to the OPC Data Access Server 2-4

vi

Contents

Step 4: Create an OPC Data Access Group Object
Step 5: Browse the Server Name Space
Step 6: Add OPC Data Access Items to the Group
Step 7: View AllItem Values
Step 8: Configure Group Properties for Logging
Step9: LogOPC ServerData
Step 10: PlottheData i
Step11:Clean Up oo it e

NNNNNMNNNDN

NI TS

Quick Start: Using the OPC Data Access Explorer

3|

Access Data with OPC Data Access Explorer 3-2
Procedure OVEIVIEWt 3-2
Step 1: Open the OPC Data Access Explorer 3-2
Step 2: Locate Your OPC Server, 3-3
Step 3: Create an OPC Data Access Client Object 3-5
Step 4: Connecttothe OPC Server 3-7
Step 5: Create an OPC Data Access Group Object 3-8
Step 6: Browse the Server Name Space 3-10
Step 7: Add OPC Data Access Items to the Group 3-12
Step 8: View AllItem Values 3-14
Step 9: Configure Group Properties for Logging 3-15
Step 10: Log OPC ServerData 3-17
Step 11:PlottheData 3-17
Step12:Clean Up ... oo vt 3-19

Quick Start: Using OPC Historical Data Access Functions

4

Access Historical Data

HDA Programming OVerviewc.c.ivvitunnneenn
Step 1: Locate Your OPC Historical Data Access Server
Step 2: Create an OPC Historical Data Access Client Object
Step 3: Connect to the OPC Historical Data Access Server
Step 4: Retrieve Historical Data
Step5:PlottheData
Step6:Clean Up . ..o oot e

AR WOWNNN

ol il i el e i

Data Access User's Guide

Introduction to OPC Data Access (DA)

S|

Discover Available Data Access Servers 5-2
Prerequisites 5-2
Determine Server IDsforaHost 5-2

Connect to OPC Data Access Serversc.0.... 5-4
OVeIVIBW . .ttt e 5-4
Createa DAClientObject 5-4
Connecta Clienttothe DAServer 5-5
Browse the OPC DA Server Name Space 5-5

Using OPC Toolbox Data Access Objects

6|

Create OPC Toolbox Data Access Objects 6-2
Overview to Objects i i e 6-2
Toolbox Object Hierarchy for the Data Access Standard 6-2
How Toolbox Objects Relate to OPC DA Servers 6-3
Create Data Access Group Objects 6-4
Create Data Access Item Objects 6-6
Build an Object Hierarchy with a Disconnected Client 6-7
Create OPC Toolbox Data Access Object Vectors 6-8
Work with Public Groups 6-10

Configure OPC Toolbox Data Access Object Properties 6-13
Purpose of Object Properties 6-13
View the Values of Object Properties 6-13
View the Value of a Particular Property 6-14
Get Information About Object Properties 6-15
Set the Value of an Object Property 6-15
View a List of All Settable Object Properties 6-16

Delete Objects e 6-17

Save and Load Objects 6-18

Reading, Writing, and Logging OPC Data

7

Readand Write Data 7-2
Introduction to Reading and Writing 7-2
Read DatafromanlItem 7-2

viii

Write DatatoanItem 7-4

Read and Write Multiple Values 7-6
Data Change Events and Subscription 7-9
Introduction to Data Change Events 7-9
Configure OPC Toolbox Objects for Data Change Events 7-9
How OPC Toolbox Software Processes Data Change Events 7-10
Customize the Data Change Event Response 7-11
LogOPCServerData 7-12
How OPC Toolbox Software LogsData 7-12
Configure a Logging Sessionviiiinenn.. 7-14
ExecuteaLogging Task 7-16
Get Logged Data into the MATLAB Workspace 7-17

Working with OPC Data

8

OPC Data: Value, Quality, and TimeStamp 8-2
Introductionto OPCData 8-2
Relationship Between Value, Quality, and TimeStamp 8-2
How Value, Quality, and TimeStamp Are Obtained 8-3

Work with Structure-FormattedData 8-6
When Structures Are Used 8-6
Perform a Read Operation on Multiple Items 8-6
Interpret Structure-FormattedData 8-7
When to Use Structure-Formatted Data 8-9
Convert Structure-Formatted Data to Array Format 8-9

Array-Formatted Data 8-11
Array Content 8-11
Conversion of Logged Datato Arraysc....... 8-11

Work with Different DataTypes 8-13
Conversion Between MATLAB Data Types and COM Variant Data

TIPS o e 8-13
Conversion of Values Written to an OPC Server 8-14
Conversion of Values Read from an OPC Server 8-14
Handling Arrays forItem Values 8-15

9

Use the Default Callback Function 9-2
Overview to Callback Example 9-2
Step 1: Create OPC Toolbox Group Objects 9-2
Step 2: Configure the Logging Task Properties 9-2
Step 3: Configure the Callback Properties 9-2

Contents

Step 4: Start the Logging Task 9-3
Step 5:Clean Up .. oo oot 9-3
Event Types e 9-4
Retrieve Event Information 9-8
Event Structures 9-8
Access Datainthe EventLog 9-10
Create and Execute Callback Functions 9-12
Create Callback Functions 9-12
Specify Callback Functions 9-13
View Recently Logged Data 9-15

Using the OPC Toolbox Block Library

10|

Block Library Overview 00t .. 10-2
Read and Write Data fromaModel 10-3
Example OVerviewt 10-3
Step 1: Create New Model in Simulink Editor 10-3
Step 2: Open the OPC Toolbox Block Library 10-3
Step 3: Drag OPC Toolbox Blocks into the Editor 10-4
Step 4: Drag Other Blocks to Complete the Model 10-4
Step 5: Configure OPC Servers for the Model 10-5
Step 6: Specify the Block Parameter Values 10-7
Step 7: Connectthe Blocks 10-9
Step 8: Run the Simulation 10-10
Use the OPC Client Managerc0uuuuun. 10-11
Introduction to the OPC Client Manager 10-11
Add Clients to the OPC Client Manager 10-11
Remove Clients from the OPC Client Manager 10-12
Modify the Server Timeout Value fora Client 10-12
Control Client/Server Connections 10-12

ix

X

Properties

11|

Historical Data Access User's Guide

Contents

Introduction to OPC Historical Data Access (HDA)

12

OPC Historical Data Accessc.0. i, 12-2
Discover Available HDA Serversc0vvuun... 12-4
Prerequisites i e 12-4
Determine HDA Server IDsforaHost 12-4
Connect to OPC HDA Serversc0iiiiiniennn.. 12-5
OVEIVIBW . ottt 12-5
Create an HDA Client Object 12-5
View a Summary of a Client Object 12-5
Connect an OPC HDA Client Object to the HDA Server 12-5
Browse the OPC Server Name Space 12-6
Get an OPC HDA Server Name Spacecouuu .. 12-6

Using OPC Toolbox HDA Client Objects

13|

OPC Toolbox HDA Objects 13-2
Locate an OPC HDA Server i, 13-3
Create an OPC HDA Client Object 13-4
Connect tothe OPCHDA Serverc.vuiiuunnn. 13-5
Set Client Properties 13-6

Set the Timeout Property 13-6
Browse the OPC Server Name Space 13-7
Retrieve an OPC HDA Server Name Space 13-8
Read Item Attributes L. 13-10

Reading OPC Historical Data

14

Overview to Reading Historical Data 14-2
Read Historical Data Overa Time Range 14-3
Read Historical Data at Specific Times 14-4
Read Processed Aggregate Data 14-5
Retrieve Large Historical DataSets 14-6
Reading ModifiedData, 14-7
Native MATLAB Data Types from Read Operations 14-8

Request Structure Output 14-8

Request MATLAB Numeric Data Output 14-8

Request Cell Array Output 14-8
Disconnect from HDA Serversc....... 14-9
Clean Up OPCHDA Objects, 14-10

Working with OPC HDA Data Objects

15

Introduction to OPC HDA Data Objects 15-2
Display Data Objects, 15-3
OPC HDA Quality Values 15-4
Manipulate Data Using OPC Toolbox HDA Objects 15-5
Resample Data Objects to Include All Available Time Stamps Using
BSUDMION . .ot 15-5
Resample Data Objects to Include All Common Time Stamps Using
tsintersect 15-6
Resample Data to a New Set of Time Stamps 15-6

Convert OPC HDA Data Objects to MATLAB Numeric Data Types
... 15-7

xi

xii

OPC HDA and UA Classes

16|

Unified Architecture User’s Guide

Contents

OPC Unified Architecture (UA)

17|

About OPC Unified Architecture 17-2
OPCUAComponentsi i, 17-3
OVEIVIEBW . ottt e e 17-3
OPCUACHENE ... e 17-3
OPCUANOE ... e 17-3
OPCUADaAta ... e e 17-3
OPCUAQualitycii i e 17-4
Working with Timein OPCUA 17-4
OPCUA ServerDataTypesc0 i, 17-5
OPCUASecurityi s 17-7
OPC UA Certificate Management 17-9
OPC UA Aggregate Functions 17-10
Introduction 17-10
Available Aggregate Functions on an OPC UA Server 17-10
OPC UA Standard Aggregate Functions 17-10
Access Data from OPC UA Servers0.... 17-13
OPC UA Programming OVerviewc.c.uouveeenn.. 17-13
Step 1: Locate Your OPCUA Server, 17-13
Step 2: Create an OPC UA Client and Connect to the Server 17-14
Step 3: Browse OPC UA Server Namespace 17-15
Step 4: Read Current Values from the OPC UA Server 17-16
Step 5: Read Historical Data from the OPC UA Server 17-17
Step6: PlottheData i 17-18
Step 7:Clean Up . . oo oot e 17-18

OPC Information Reference

OPC Quality

A

OPCQuality e A-2
Major Quality e A-3
QualitySubstatus e A-4
Limit Status A-6

OPC DA Server Item Properties B-2
OPC Item Property Set B-3
OPC Specific Properties B-4
OPC Recommended Properties B-5

C

OPC HDA Item Attributes C-2

xiii

xiv

Contents

Functions

18|

Blocks

19

OPC Toolbox Examples

20

Install a Simulation Server for OPC Toolbox Examples 20-2
Acquire Data from an OPC Data Access Server 20-3
Locate and Browse OPC Data Access Servers 20-7
Create and Configure OPC Toolbox Objects 20-10
Manage OPC Toolbox Data Access Objects 20-14
Read and Write Data to an OPC Data Access Server 20-17
Log Data from an OPC Data Access Server 20-21
View the OPC Toolbox Eventlog 20-24
Monitor Logging Progress with OPC Toolbox Callbacks 20-26
Update MATLAB Plots While LoggingOPCData 20-28
Locate and Browse OPC Historical Data Access Servers 20-30
Acquire Data from an OPC Historical Data Access Server 20-33
Visualize and Preprocess OPCHDA Data 20-37
Browse OPC UA Server Namespacec.coueuun.non. 20-44
Read and Write Current OPC UA ServerData 20-51
Read Historical OPC UA ServerData 20-56
Visualize and Preprocess OPCUAData 20-61
Read and Write to an OPC Data Access Server from Simulink 20-70
Use OPC Data to Test a Binary Distillation Column Plant Model 20-72

Getting Started

15

Introduction

* “OPC Toolbox Product Description” on page 1-2

» “Overview of OPC, Servers, and the Toolbox” on page 1-3
* “Get Command-Line Function Help” on page 1-6

* “Set Up for OPC Toolbox Software” on page 1-7

* “Troubleshooting” on page 1-17

1 Introduction

OPC Toolbox Product Description

Read and write data from OPC servers and data historians

OPC Toolbox provides access to live and historical OPC data directly from MATLAB® and Simulink®.
You can read, write, and log OPC data from devices, such as distributed control systems, supervisory
control and data acquisition systems, and programmable logic controllers.

With OPC Toolbox you can work with data from live servers and data historians that conform to the
OPC Data Access (DA) standard, the OPC Historical Data Access (HDA) standard, and the OPC
Unified Architecture (UA) standard. The toolbox lets you securely connect to OPC UA servers using a
variety of security modes, algorithms, and authentication methods.

The product includes Simulink blocks that let you model online supervisory control and perform
hardware-in-the-loop controller testing.

1-2

Overview of OPC, Servers, and the Toolbox

Overview of OPC, Servers, and the Toolbox

In this section...

“About OPC Toolbox Software” on page 1-3
“About OPC” on page 1-4

“OPC Servers” on page 1-4

“System Requirements” on page 1-5

About OPC Toolbox Software

OPC Toolbox software implements a hierarchical object-oriented approach to communicating with
OPC servers using the OPC Data Access and Historical Data Access Standards. Using toolbox
functions, you create OPC Data Access (DA) and Historical Data Access (HDA) Client objects which
represent the connection between MATLAB and an OPC server. Using properties of the client objects
you can control various aspects of the communication link, such as time out periods, connection
status, and storage of events associated with that client. “Connect to OPC Data Access Servers” on
page 5-4 and “Connect to OPC HDA Servers” on page 12-5 describe how to create DA and HDA
client objects respectively.

Once you establish a connection to an OPC DA server, you create Data Access Group objects
(dagroup ohjects) that represent collections of OPC Data Access Items. You then add Data Access
Item objects (daitem objects) to that group, for monitoring server item values from the OPC server
and writing values to the OPC server. You can use the dagroup object to perform such actions as
determining how often the items in the group must be updated, executing a MATLAB function when
the server provides notification of changes in item state, and other tasks related to the group. “Create
OPC Toolbox Data Access Objects” on page 6-2 describes how to create and configure dagroup
objects and add daitem objects to a group.

Using OPC Toolbox DA functionality, you can log records (a list of items that have changed, and their
new values) from an OPC Data Access Server to disk or to memory, for later processing. The logging
task is controlled by the dagroup object. “Log OPC Server Data” on page 7-12 describes how to log

data using the OPC Toolbox logging mechanism.

The HDA functionality allows for the retrieval and analysis of historical data from HDA OPC servers.
Establishing a connection to an HDA server via the OPC HDA client object, allows you to retrieve
historical data for a range of times or at a specific time. Both raw and aggregated data collections
can be retrieved in the form of opc.hda.Data objects. These data objects provide numerous data
manipulation and display operations.

To work with the data you acquire, you must bring it into the MATLAB workspace. When the records
are acquired, the toolbox stores them in a memory buffer or on disk. The toolbox provides several
ways to bring one or more records of data into the workspace where you can analyze or visualize the
data.

You can enhance your OPC application by using DA event callbacks. The toolbox has defined certain
OPC Toolbox software occurrences, such as the start of an acquisition task, as well as OPC server
initiated occurrences, such as notification that an item's state has changed, as events. You can
associate the execution of a particular function with a particular event.

When working in the Simulink environment, you can use blocks from the OPC Toolbox block library to
use live OPC data as inputs to your model and update the OPC server with your model outputs. The

1-3

1

Introduction

1-4

OPC Toolbox block library includes the capability of running Simulink models in pseudo real time, by
slowing the simulation to match the system clock. You can prototype control systems, provide plant
simulators, and perform optimization and tuning tasks using Simulink and the OPC Toolbox block
library.

About OPC

Open Platform Communications (OPC) is a set of interoperability standards maintained by the OPC
Foundation (https://www.opcfoundation.org) for the exchange of data in the industrial
automation and other industries. OPC uses Microsoft® DCOM technology to provide a communication
link between OPC servers and OPC clients. OPC has been designed to provide reliable communication
of information in a process plant, such as a petrochemical refinery, an automobile assembly line, or a
paper mill.

Before you interact with OPC servers using OPC Toolbox software, you should understand the OPC
client-server relationship, how OPC servers organize their server items, and how clients can interact
with those server items. “Toolbox Object Hierarchy for the Data Access Standard” on page 6-2
explains these concepts in detail.

OPC Servers

OPC Toolbox software is an OPC Data Access and Historical Data Access client application, capable of
connecting to any OPC DA and HDA compliant server. By utilizing the OPC Foundation standards, the
toolbox does not require any knowledge about the internal configuration and operation of the OPC
server. Instead, the OPC Standard provides the common mechanism for the server and client to
interact with each other.

An OPC server is identified by a unique server ID. The server ID is unique to the computer on which
the server is located. A combination of the host name of the server computer, and the server ID of the
OPC server, provides a unique identifier for an OPC server on a network of computers.

OPC Server Name Spaces

All OPC servers are required to publish a name space, consisting of an arrangement of the name of
every server item (also known as an item ID) associated with that server. The name space provides
the internal map of every device and location that the server is able to monitor and/or update.

The following figure shows a portion of the name space on a typical OPC server.

OPC ServeyServer.I0. Dyt

F-E1 Areali

ServerlD

E m s — Server Name Space
=2 Fico
—& Autohtan
—& cv
CarDw= Server ltem
& sp

& FIC02
& LITH
& LITO2

—&1 Unitg

Server Item

https://www.opcfoundation.org

Overview of OPC, Servers, and the Toolbox

A server item represents a value on the OPC server that a client might be interested in. A server item
could represent a physical measurement device (such as a temperature sensor), a particular
component of a device (such as the set-point for a controller), or a variable or storage location in a
supervisory control and data acquisition (SCADA) system. Each server item is uniquely represented
on the server by a fully qualified item ID. The fully qualified item ID is usually made up of the path to
that server item in the tree, with each node name separated by a period character. In the previous
Server Item figure, the fully qualified item ID for the highlighted server item might be
Area0l.UnitA.FICOL1.PV.

Most OPC servers provide a hierarchical name space, where server items are arranged in a tree-like
structure. The tree can contain many different categories (called branch nodes), each with one or
more branches and/or leaf nodes. A leaf node contains no other branches, and often represents a
specific server Item. The fully qualified item ID of a server item is simply the “path' to that leaf node,
with a server-dependent separator.

Some OPC servers provide only a flat name space, where server items are all arranged in one single
group. You could consider a flat name space as a name space containing only leaf nodes.

It is possible to convert a hierarchical name space into a flat name space. It is not always possible to
convert a flat name space into a hierarchical name space.

For information on how to obtain the name space of an OPC server, see “Browse the OPC Server
Name Space” on page 12-6.

System Requirements

OPC Toolbox software provides the Data Access client capabilities from within MATLAB. To use this
toolbox functionality, you need access to an OPC server that supports the Data Access Specification
version 2.05. In addition, you will need to ensure that you are able to connect to those OPC servers
from the computer on which the toolbox software is installed. For more information on how to
configure the client and server computers so that you can connect to an OPC server, see “Set Up for
OPC Toolbox Software” on page 1-7.

1-5

1

Introduction

Get Command-Line Function Help

1-6

To get command-line function help, use the MATLAB help function. For example, to get help for the
opcserverinfo function, type

help opcserverinfo

To get help on a particular HDA function, use the opchda prefix. For example to get help on the HDA
equivalent of the opcserverinfo function, type

help opchdaserverinfo

OPC Toolbox software also provides its own versions of several MATLAB functions, using the same
function names. For example, the toolbox provides a version of the isvalid function. When you type

help isvalid

you get help for the MATLAB handle object version of this function. If there are multiple versions of a
function available, the help indicates this. For isvalid, the help contains this line:

Other functions named isvalid

If necessary, click that link to view the function list. You might see a listing like this.

Other functions named isvalid:
handle/isvalid, timer/isvalid, serial/isvalid, instrument/isvalid,
imaqdevice/isvalid, imaqchild/isvalid, vrworld/isvalid,
vrnode/isvalid, vrfigure/isvalid, daqdevice/isvalid,
dagchild/isvalid, icgroup/isvalid, xregpointer/isvalid,
idnlgrey/isvalid, iconnect/isvalid, opcroot/isvalid.

To get help on the OPC Toolbox version of this function, click the appropriate link, or type
help opcroot/isvalid

To avoid specifying which version to view, use the opchelp function.

opchelp isvalid

You can also use opchelp to get help on OPC Toolbox object properties.

opchelp Eventlog

Set Up for OPC Toolbox Software

Set Up for OPC Toolbox Software

In this section...

“Preparation Overview” on page 1-7

“Set Up for Communicating with OPC DA and OPC HDA Servers” on page 1-7

“Install an OPC DA or HDA Simulation Server for OPC Classic Examples” on page 1-14

“Set Up for Communicating with OPC UA Servers” on page 1-15

“Install an OPC UA Simulation Server for OPC UA Examples” on page 1-15

“(Optional) Install a Local Discovery Service for OPC UA Server Discovery Examples” on page 1-15

Preparation Overview

Before you can communicate with OPC servers on your network, you need to prepare your
workstation (and possibly the OPC server host computer) to use the technologies on which OPC
Toolbox software is built. These technologies, described in “About OPC” on page 1-4, allow you to
browse for and connect to OPC servers on your network, and allow those OPC servers to interact with
your MATLAB session using OPC Toolbox software.

The specific steps are described in the following sections.

Set Up for Communicating with OPC DA and OPC HDA Servers

Install the OPC Foundation Core Components

OPC DA and HDA use the “OPC Classic” technologies, which employ Microsoft DCOM standards.
DCOM is used for client-server communication, and for managing security of the connections through
standard Microsoft security permissions on DCOM objects. To use OPC Classic capabilities with OPC
Toolbox, you must configure your computer and possibly the server computer to allow for this
communication.

The OPC Foundation provides a set of tools for browsing other computers on your network for OPC
servers, and for communicating with the OPC servers. These tools are called the OPC Foundation
Core Components, and are shipped with OPC Toolbox software.

To install the OPC Foundation Core Components, use the opcregister function. You can also use
the opcregister function to remove or repair the OPC Foundation Core Components installation.

Installing, repairing, and removing the OPC Foundation Core Components follows the same steps:

1 Ifyou are repairing or removing the OPC Foundation Core Components, make sure that you do
not have any OPC Toolbox objects in memory. Use the opcreset function to clear all objects
from memory.

opcreset;

2 Run opcregister with the action you would like to perform. If you do not supply an option, the
function assumes that you want to install the components. Otherwise, use ' repair' to repair an
installation (reinstall the files), or ' remove' to remove the components.

opcregister('install')

1-7

1

Introduction

1-8

3 You will be prompted to type Yes to confirm the action you want to perform. You must type Yes
exactly as shown, without any quotes. This confirmation question is used to ensure that you
acknowledge the action that is about to take place.

4 The OPC Foundation Core Components will be installed, repaired, or removed from your system.

If you receive a warning about having to reboot your computer, you must quit MATLAB and
restart your computer for the changes to take effect.

Configure DCOM

DCOM is a client-server based architecture for enabling communication between two applications
running on distributed computers. The OPC DA and HDA specifications utilize DCOM for
communication between the OPC client (for example, OPC Toolbox software) and the OPC server. To
successfully use DCOM, those two computers must share a common security configuration so that the
two applications are granted the necessary rights to communicate with each other.

To connect successfully to OPC Servers using OPC Toolbox, you must configure DCOM permissions
between the client computer (on which MATLAB is installed) and the server computer (running the
OPC Server). This section describes two typical DCOM configuration options for OPC Toolbox
software. Other DCOM options might provide sufficient permissions for the toolbox to work with an
OPC server; the options described here are known to work with tested vendors’ OPC servers.

There are two configuration types described in this section:

* “Configure DCOM to Use Named User Security” on page 1-8 describes how to provide security
between the client and server negotiated on a dedicated named user basis. You do not have to be
logged in as the named user in order to use this mechanism; all communications between the
client and the server are performed using the dedicated named user, independently of the user
making the OPC requests. However, the identity used to run the OPC server must be available on
the client machine, and the password of that identity must match on both machines.

* “Configure DCOM to Use No Security” on page 1-13 describes a configuration that provides no
security between the client and server. Use this option only if you are connecting to an OPC server
on a dedicated, private network. This configuration option has been known to cause some
Microsoft Windows® services to fail, and to leave the computer vulnerable to malicious intrusion
from other network users.

You should use the named user configuration, unless your system administrator indicates that no
security is required for OPC access.

Caution If your OPC server software comes with DCOM setup guidelines, you should first attempt to
follow the instructions provided by the OPC server vendor. The guidelines provided in this section are
generic and may not suit your specific network and security model.

Note The following instructions apply to the Microsoft Windows 7 operating system with Service
Pack 1. Users of other Microsoft Windows operating systems should be able to adapt these
instructions to configure DCOM on their systems.

Configure DCOM to Use Named User Security

To configure DCOM to use named user security, you will have to ensure that both the server machine
and client machine have a common user who is granted DCOM access rights on both the server and

Set Up for OPC Toolbox Software

client machines. You should consult the following sections for information on configuring each
machine:

“OPC Server Machine Configuration” on page 1-9 provides the steps that you must perform on
each of the machines providing OPC servers.

“Client Machine Configuration” on page 1-10 provides the steps that you must perform on the
machine that will run MATLAB and OPC Toolbox software.

OPC Server Machine Configuration

On the machines hosting the OPC servers, perform the following steps:

1

Create a new local user. (You can also create a domain user if the server and client machines are
part of the same domain.) The name used in these instructions is opc (displayed as OPC Server
in dialogs boxes), but you can choose any name, as long as you remain consistent throughout
these instructions.

Select Start > Control Panel. Double-click Administrative Tools and then double-click
Component Services. The Component Services dialog appears.

[%. Component Services \}
%. File Action View Window Help
= 2@ 0 BE DIE

23 Console Root
> |%. Component Services |
> @ Event Viewer (Local) Computers
» 5 Services (Local)

e U e I SYRP

Browse to Component Services > Computers > My Computer > DCOM Config.

Locate your OPC server in the DCOM Config list. The example below shows the Matrikon™ OPC
Server for Simulation.

%. Component Services [‘:' Gl %
%. File Action View Window Help ==
s 2EX0 c| @ 0% D
21 Console Root = || Name ApplicationID ~
4 (@ Component Services _|||'& Matlab. Application. Single (Ver... {72B715CE-4AD:.
4 || Computers MatrikonDP‘CSewerforSimula... {F8582 CF3-88 FEI
a (& My Computer g mcGlidHost {OFEDDOBT-D5A
. | COM+ Applications g Mecx25etup Class {893 CFEBF-CD6I
a || DCOM Config 2 MceMdeQutputProfile {659A3105-82A2
s g FeSystemRoot¥e\system32\appwiz.cp ~ g MediaCatalogMergedDB Provid... {3E044AA4-2371
- Mva .o 4 - m weme pmrsaseen oana
4| 1 3 4| 1 +
AW‘-WWW—#J

Right-click the OPC server object, and choose Properties.
In the General tab, ensure that the Authentication Level is set to Default or to Connect.

In the Security tab, choose Customize for the Launch and Activation Permissions, then click
Edit. Ensure that the opc user is granted local Launch and Activation permissions.

1-9

1 Introduction

Pemizsions for OPC Server Dery

Local Launch
Remote Launch
Local Activation
Remote Activation

Click OK to dismiss the Local Launch and Activation Permissions dialog box.

8 In the Security tab, choose Customize for the Access Permissions, then click Edit. Ensure that
the opc user is granted Local Access permissions.

Pemissions for OPC Server Mlow Deny

Local Access i
Remote Access

Click OK to dismiss the Local Launch and Activation Permissions dialog box.

9 In the Identity tab, select This user and type the name and password for the opc user (created
in step 1).

Which user account do you want to use to un this application?

The interactive user.

The launching user.

opc Browse...
Password: LTI YIIYTTII I
Confirm password: sEEERERE IR RRES

The system account (services only).

10 Ifthe OPC server runs as a service, make sure that the service runs as the opc user (created in
step 1) and not as the system account. Consult your system administrator for information on how
to configure a service to run as a specific user.

11 Repeat steps 4 through 10 for each of the servers you want to connect to.

Client Machine Configuration

On the machine(s) that will be running MATLAB and OPC Toolbox software, perform the following
steps:

1 On the client machine(s), create the identical local user with the same name and password
permissions as you set up in step 1 of “OPC Server Machine Configuration” on page 1-9.

2 Select Start > Control Panel. Double-click Administrative Tools and then double-click
Component Services. The Component Services dialog appears.

3 Browse to Component Services > Computers > My Computer. Right-click My Computer
and select Properties.

1-10

Set Up for OPC Toolbox Software

-
(2 Compcnent Services - -
2. File Action View Window Help
=B XEE=HE
[Z11 Console Root
4 %, Component Services
4[| Computers
4 1 My ¢ = =
s 0 d Refresh all components | Runnin
o _| Distriby
a[]C Vi
iew 3
>
) o Mew Window from Here
4
- Export List...
-
> : Properties
-
- Help
> & 32-bit Preview Handler Surrogate Ho
L il —— -

Click the Default Properties tab, and ensure that:

* Enable Distributed COM is checked
¢ Default Authentication Level is set to Connect
* Default Impersonation Level is set to Identify

Enable Distributed COM on this computer
[] Enable COM Intemet Services on this computer
Default Distributed COM Communication Properties
The Authentication Level specifies security at the packet level.

Default Authentication Lewvel:
Connect hd

The impersonation level specifies whether applications can determine
who ig calling them, and whether the application can do operations
using the client’s identity.

Default Impersonation Level:
[dentiy -

Security for reference tracking can be provided if authentication is used
and that the default impersonation level iz not anonymous.

[T Provide additional security for reference tracking

Y Y o AU et S R
Click the COM Security tab.

1-11

1 Introduction

General I Options I Default Properties
Default Protocols |~ COMSecuty | MSDTC

Access Permissions

You may edit who is allowed default access to applications. You may
also set limits on applications that detemine their own pemmissions.

Caution: Modifying access permissions can affect the ability
. of applications to start, connect, function and/or run
securely.

[Edtlmis.. | [Ed Defadt..

Launch and Activation Pemmissions

You may edit who is allowed by default to launch applications or
activate objects. You may also set limits on applications that
determine their own permissions.

Caution: Modifying launch and activation pemissions can
i, affect the ability of applications to start, connect, function
and.or run securely.

| Edtlmis.. | [EdiDefat. |

R N O e NSy

6 For the Access Permissions, click Edit Default and ensure that the opc user is included in the
Default Security list, and is granted both Local Access and Remote Access permissions.

Pemizsions for OPC Server Alow Dery
Local Access

Remote Access

Click OK to close the Default Access Permissions dialog box.

7 Still under Access Permission", click Edit Limits and ensure that the opc user is included in the
Security Limits list, and is granted both Local Access and Remote Access permissions.

Click OK to close the Security Limits dialog box.

8 For the Launch and Activation permissions, click Edit Default and ensure that the opc user is
included in the Default Security list, and is granted all rights (Local Launch, Remote Launch,
Local Activation, and Remote Activation).

Pemissions for OPC Server

Local Launch
Remote Launch

Local Activation
Remoate Activation

Click OK to close the Default Access Permissions dialog box.

9 Still under Launch and Activation Permission, click Edit Limits and ensure that the opc user is
included in the Security Limits list, and is granted all rights (Local Launch, Remote Launch,
Local Activation, and Remote Activation).

Click OK to close the Security Limits dialog.
10 Click OK. A dialog warns you that you are modifying machine-wide DCOM settings.

Click Yes to accept the changes.

1-12

Set Up for OPC Toolbox Software

Your local client machine and server applications are now configured to use the same username when
the server attempts to establish a connection back to the client.

Configure DCOM to Use No Security

Caution You should not use this option if you are not in a completely trusted network. Turning off
DCOM security means that any user on the network can launch any COM object on your local
machine. Consult your network administrator before following these instructions.

You must complete the following steps on both the client and server machines.

1

Ensure that the Guest user account is enabled. (The Guest account is disabled by default on
Windows 7 machines). Consult your system administrator for information on how to enable the
Guest account.

Select Start > Control Panel. Double-click Administrative Tools and then double-click
Component Services. The Component Services dialog appears.

-
%. Component Services \}

%. File Action View Window Help
=[0I BE DIE
21 Console Root -

. |*%. Compenent Services |

> @ Event Viewer (Local) Computers
» 5 Services (Local)

T P g

Browse to Component Services > Computers > My Computer. Right-click My Computer
and select Properties.

3 -
% Component Services

%. File Action VWiew Window Help

e #EAXE o= Em 0 LE=EE

A |

[Z Console Root “ || Mame
4 . Component Services “ COM=+
4 || Computers '_'DCO
4 [My Gommmntes =
d Refresh all components - Runnin
. - 0 _| Distrib
d View b
r Mew Window from Here
r .
| Export List...
. 4
- Properties
.-
. 4 Help
» é 32-bit Preview Handler Surrogate Ho
L Ala A

In the Default Properties tab, make sure that Enable Distributed COM On This Computer is
selected. Select None as the Default Authentication Level, and Anonymous as the Default
Impersonation Level.

1-13

1 Introduction

Enable Distributed COM on this computer
[Enable COM Intemet Services on this computer
Default Distrbuted COM Communication Properties
The Authentication Level specifies security at the packet level.

Default Authentication Lewvel:

Mone -

The impersonation level specifies whether applications can detemmine
who is calling them, and whether the application can do operations
using the client’s idertity.

Default Impersonation Level:

Anorymous -

Security for reference tracking can be provided if authertication is used
and that the default impersonation level is not anorymous.

Provide additional security for reference tracking

e VL RPN _ PSP

5 Inthe COM Security tab, select Edit Limits from the Access Permissions and ensure that
Everyone and ANONYMOUS LOGON are both granted Local Access and Remote Access.

Pemissions for Everyone

Local Access
Remote Access

6 Inthe COM Security tab, select Edit Limits from the Launch and Activation Permissions and
ensure that Everyone and ANONYMOUS LOGON are both granted Local and Remote permissions
(Local Launch, Remote Launch, Local Activation and Remote Activation).

Pemissions for Everyone

Local Launch
Remate Launch

Local Activation
Remote Activation

Both the client and the server are now configured so that anybody can access any COM object on
either machine.

Caution This configuration is potentially dangerous in terms of security, and is recommended for
debugging purposes only.

Install an OPC DA or HDA Simulation Server for OPC Classic Examples
OPC DA and OPC HDA (together, called “OPC Classic”) examples in this guide and in the OPC

Toolbox online help make use of a Matrikon OPC Simulation Server that you can download free of
charge from https://www.matrikonopc.com.

1-14

https://www.matrikonopc.com

Set Up for OPC Toolbox Software

Note You do not need to install the Matrikon OPC Simulation Server to enable any functionality of
OPC Toolbox software. The Simulation Server is used here only for showing examples of the
capabilities and syntax of OPC Toolbox commands, and for providing fully working examples.

To install the Matrikon OPC Simulation Server, follow the installation instructions with the software.
The OPC Toolbox documentation and examples assume a default installation of the Matrikon
Simulation Server.

Set Up for Communicating with OPC UA Servers
Allow OPC UA Communication Through Firewalls

OPC UA communication takes place using various TCP/IP ports. To locate OPC UA servers on other
hosts, OPC Toolbox uses the OPC UA Local Discovery Service for that host, which is hosted on port
4840. Every other OPC UA server on a host uses a different port for communication. Locally, OPC
Toolbox uses a random local port number to initiate the connection.

If you have a local firewall, you must ensure that the firewall allows MATLAB to communicate
through the firewall. All other firewalls between the OPC Toolbox software and the OPC UA servers
must permit communication on port 4840 plus all other ports set up by your OPC server
administrator for the OPC UA servers you want to connect to.

Install an OPC UA Simulation Server for OPC UA Examples

OPC UA examples in this guide and in OPC Toolbox online help make use of a Prosys OPC UA
Simulation Server that you can download free of charge from https://www.prosysopc.com/products/
opc-ua-simulation-server/.

To install the Prosys OPC UA Simulation Server, follow the installation instructions with the software.

When you have started the server, you might want to reduce the number of ports used by the server
by turning off HTTPS endpoints in the Endpoints tab of the Prosys OPC UA Simulation Server tool.

(Optional) Install a Local Discovery Service for OPC UA Server
Discovery Examples

If you want to explore the OPC UA server discovery examples, you must install the OPC UA Local
Discovery Service (LDS) and register your Simulation Server with the LDS. A free LDS installer is
maintained by the OPC Foundation.

Download the Local Discovery Service

Download the LDS installer from https://opcfoundation.org/developer-tools/samples-and-tools-unified-
architecture/local-discovery-server-lds/

The download is free, although you must create an OPC Foundation website account to access
downloads.

Run the installer, which automatically registers the LDS on your computer. The LDS always uses port
4840 for communication.

1-15

https://www.prosysopc.com/products/opc-ua-simulation-server/
https://www.prosysopc.com/products/opc-ua-simulation-server/
https://opcfoundation.org/developer-tools/samples-and-tools-unified-architecture/local-discovery-server-lds/
https://opcfoundation.org/developer-tools/samples-and-tools-unified-architecture/local-discovery-server-lds/

1 Introduction

1-16

Register the Simulation Server with the Local Discovery Service

The LDS requires a secure connection to OPC UA servers to allow those servers to register
successfully with the LDS. This requires an Application Instance certificate to be trusted by the LDS.
To allow the Prosys OPC UA Simulation Server to register with the OPC Foundation LDS, follow these
steps.

Run the Prosys OPC UA Simulation Server.

In the Endpoints tab, Register to pane, check the option Local Discovery Server.

In the Certificates tab, select the SimulationServer node and click Open in File Explorer.

Copy the SimulationServer.der file to C:\ProgramData\OPC Foundation\UA
\Discovery\pki\trusted\certs.

Restart the Prosys OPC UA Simulation Server.

6 In the MATLAB Command Window, discover OPC UA servers published by the LDS. You should
see an entry named SimulationServer.

A W N -

opcuaserverinfo localhost

ans =

OPC UA ServerInfo 'SimulationServer':
Connection Information

Hostname: 'opc-demol.my.local'
Port: 53530

Troubleshooting

Troubleshooting

In this section...

“Unable to Find an OPC Server” on page 1-17
““Class not registered” Error” on page 1-17
“Unable to Query the Server” on page 1-17
“Unable to Connect to Server” on page 1-17
“Unable to Create a Group” on page 1-18

“Error While Querying Interface” on page 1-18

If you are unable to establish a connection to an OPC server, the following sections might help you to
identify and solve problems with installation and configuration that could be preventing you from
successfully querying and connecting to OPC servers.

Most problems with connecting to an OPC server relate to the DCOM settings on either the host or
the client machine. For information on configuring DCOM, see “Configure DCOM” on page 1-8.

Unable to Find an OPC Server

First, check that you are able to communicate with the host from your client. You can test this by
attempting to run a Command Prompt and using the 'ping' command on the host. Alternatively, try
to browse to the host using the Network Neighborhood.

If you are able to communicate with the host, but you are unable to find an OPC server (using the
opcserverinfo command) on that host, then the OPC Foundation Core Components may have to be
reinstalled on your workstation. You can run the opcregister function to repair your OPC
Foundation Core Components installation. For more information see “Install the OPC Foundation
Core Components” on page 1-7.

“Class not registered” Error
If you get this error while attempting to query a server using opcserverinfo, or when attempting
to add a host in the OPC Data Access Explorer app, the OPC Foundation Core Components have not

been installed correctly. Install the OPC Foundation Core Components, as described in “Install the
OPC Foundation Core Components” on page 1-7.

Unable to Query the Server

If you are unable to query the server using opcserverinfo, the most common cause is incorrectly
configured local DCOM security settings. Review the section on “Configure DCOM” on page 1-8.

Unable to Connect to Server

An inability to connect to the OPC server usually indicates that the security model on the server is not
allowing you to make an initial connection. Check the DCOM configuration on the server, and review
the section on “Configure DCOM” on page 1-8.

1-17

1 Introduction

1-18

Unable to Create a Group

If you are able to connect to the server but cannot create a group, the most common cause is
incorrectly configured local DCOM security settings. Review the section on “Configure DCOM” on
page 1-8.

Error While Querying Interface

If you get this error while attempting to add a group to a connected client object,

Error occurred while querying interface: IID IOPCDataCallback

your local DCOM security settings are not permitting the OPC server to connect to the OPC Toolbox
software client on the local machine. Review the section on “Configure DCOM” on page 1-8.

Quick Start: Using OPC Data Access
Functions

The best way to learn about OPC Toolbox capabilities is to look at a simple example. This chapter

illustrates the basic steps required to log data from an OPC Data Access (DA) server for analysis and
visualization.

This chapter contains cross-references to other sections in the documentation that provide more in-
depth discussions of the relevant concepts.

2 Quick Start: Using OPC Data Access Functions

Access Data at Command Line

2-2

In this section...

“DA Programming Overview” on page 2-2

“Step 1: Locate Your OPC Data Access Server” on page 2-2
“Step 2: Create an OPC Data Access Client Object” on page 2-3
“Step 3: Connect to the OPC Data Access Server” on page 2-4
“Step 4: Create an OPC Data Access Group Object” on page 2-4
“Step 5: Browse the Server Name Space” on page 2-4

“Step 6: Add OPC Data Access Items to the Group” on page 2-5
“Step 7: View All Item Values” on page 2-6

“Step 8: Configure Group Properties for Logging” on page 2-6
“Step 9: Log OPC Server Data” on page 2-7

“Step 10: Plot the Data” on page 2-7

“Step 11: Clean Up” on page 2-7

DA Programming Overview

This section illustrates the basic steps to create an OPC Toolbox Data Access application by
visualizing the Triangle Wave and Saw-toothed Wave signals provided by the Matrikon OPC
Simulation Server. The application logs data to memory and plots that data, highlighting uncertain or
bad data points. By visualizing the data you can more clearly see the relationships between the
signals.

Note To run the sample code in the following steps you need the Matrikon OPC Simulation Server on
your local machine. For installation details, see “Install an OPC DA or HDA Simulation Server for OPC
Classic Examples” on page 1-14. The code requires only minor changes to work with other servers.

Step 1: Locate Your OPC Data Access Server

In this step, you obtain two pieces of information that the toolbox needs to uniquely identify the OPC
Data Access server that you want to connect to. You use this information when creating an OPC Data
Access Client object (opcda client object), described in “Step 2: Create an OPC Data Access Client
Object” on page 2-3.

The first piece of information is the host name of the server computer. The host name (a descriptive
name like "PlantServer" or an IP address such as 192.168.16.32) qualifies that computer on the
network, and is used by the OPC Data Access protocols to determine the available OPC servers on
that computer, and to communicate with the computer to establish a connection to the server. In any
OPC Toolbox application, you must know the name of the OPC server's host, so that a connection with
that host can be established. Your network administrator can provide a list of host names that provide
OPC servers on your network. In this example, you will use Localhost as the host name, because
you will connect to the OPC server on the same machine as the client.

Access Data at Command Line

The second piece of information is the OPC server's server ID. Each OPC server on a particular host
is identified by a unique server ID (also called the Program ID or ProgID), which is allocated to that
server on installation. The server ID is a text character vector, usually containing periods.

Although your network administrator can provide a list of server IDs for a particular host, you can
query the host for all available OPC servers. “Discover Available Data Access Servers” on page 5-2
discusses how to query hosts from the command line.

Use the opcserverinfo function to make a query from the command line.
hostInfo = opcserverinfo('localhost')

hostInfo =
Host: 'localhost'
ServerID: {1x3 cell}
ServerDescription: {1x3 cell}
OPCSpecification: {'DA2' 'DA2' 'DA2'}
ObjectConstructor: {1x3 cell}

Examining the returned structure in more detail provides the server IDs of each OPC server.
allServers = hostInfo.ServerID'

allServers =
'Matrikon.OPC.Simulation.1'
"ICONICS.Simulator.1'
'Softing.0PCToolboxDemo ServerDA.1'

Step 2: Create an OPC Data Access Client Object

After determining the host name and server ID of the OPC server to connect to, you can create an
opcda client object. The client controls the connection status to the server, and stores any events that
occur from that server (such as notification of data changing state, which is called a data change
event) in the event log. The opcda client object also contains any Data Access Group objects that you
create on the client. For details on the OPC Toolbox object hierarchy, see “Toolbox Object Hierarchy
for the Data Access Standard” on page 6-2.

Use the opcda function to specify the host name and Server ID.

da

opcda('localhost', '"Matrikon.OPC.Simulation.1")

da =
OPC Data Access Object: localhost/Matrikon.OPC.Simulation.1
Server Parameters

Host: localhost
ServerlID: Matrikon.OPC.Simulation.1
Status: disconnected
Object Parameters
Group: 0-by-1 dagroup object

For details on creating clients, see “Create OPC Toolbox Data Access Objects” on page 6-2.

2-3

2 Quick Start: Using OPC Data Access Functions

2-4

Step 3: Connect to the OPC Data Access Server

OPC Data Access Client objects are not automatically connected to the server when they are created.
This allows you to fully configure an OPC Toolbox object hierarchy (a client with groups and items)
before connecting to the server, or without a server even being present.

Use the connect function to connect an opcda client object to the server at the command line.

connect(da)

Step 4: Create an OPC Data Access Group Object

You create Data Access Group objects (dagroup objects) to control and contain a collection of Data
Access Item objects (daitem objects). A dagroup object controls how often the server must notify

you of any changes in the item values, controls the activation status of the items in that group, and

defines, starts, and stops logging tasks.

On their own, dagroup objects are not useful. Once you add items to a group, you can control those
items, read values from the server for all the items in a group, and log data for those items, using the
dagroup object. In Step 5 you browse the OPC server for available tags. Step 6 involves adding the
items associated with those tags to the dagroup object.

Use the addgroup function to create dagroup objects from the command line. This example adds a
group to the opcda client object already created.

grp = addgroup(da)
grp =

OPC Group Object: GroupO
Object Parameters

GroupType: private

Item: 0-by-1 daitem object

Parent: localhost/Matrikon.OPC.Simulation.1
UpdateRate: 0.5

DeadbandPercent: 0
Object Status

Active: on
Subscription: on
Logging: off
LoggingMode: memory

See “Create Data Access Group Objects” on page 6-4 for more information on creating group
objects from the command line.

Step 5: Browse the Server Name Space

All OPC servers provide access to server items via a server name space. The name space is an
ordered list of the server items, usually arranged in a hierarchical format for easy access. A server
item (also known as a tag) is a measurement or data point on a server, providing information from a
device (such as a pressure sensor) or from another software package that supplies data through OPC
Data Access (such as a SCADA package).

Note If you know the item IDs of the server items you are interested in, you can skip this section and
go directly to “Step 6: Add OPC Data Access Items to the Group” on page 2-5. In this example,

Access Data at Command Line

assume that you do not know the exact item IDs, although you do know that you want to log
information from the Saw-toothed Waves and Triangular Waves provided by the Matrikon Simulation
Server.

From the command line, you can “browse” the server name space using the serveritems function.
You need to supply a connected opcda client object to the serveritems function, and an optional
character vector argument to limit the returned results. The character vector can contain wildcard
characters (*). An example of using serveritems is as follows.

sawtoothItems = serveritems(da, '*Saw*"')

sawtoothItems =
'Saw-toothed Waves.
'Saw-toothed Waves.Intl'
'Saw-toothed Waves.Int2'
'Saw-toothed Waves.Int4'
'Saw-toothed Waves.Money'
'Saw-toothed Waves.Real4'
'Saw-toothed Waves.Real8'
'Saw-toothed Waves.UIntl'
'Saw-toothed Waves.UInt2'
'Saw-toothed Waves.UInt4'

The command for obtaining the server item properties is serveritemprops. See the
serveritemprops reference page for details.

Step 6: Add OPC Data Access Items to the Group

Now that you have found the server items in the name space, you can add Data Access Item objects
(daitem object) for those tags to the dagroup object you created in Step 4. A daitem object is a link
to a tag in the name space, providing the tag value, and additional information on that item, such as
the Canonical Data Type.

Reading a Value from the Server

A daitem object initially contains no information about the server item that it represents. The
daitem object only updates when the server notifies the client of a change in status for that item (the
notification is called a data change event) or the client specifically reads a value from the server.

Each time you read or obtain data from the server through a data change event, the server provides
you with updated Value, Quality, and Timestamp values.

Adding More Items to the Group

Use the additem function to add items to a dagroup object. You need to pass the dagroup object to
which the items will be added, and the fully qualified item ID as a character vector. The item IDs were
found using the serveritems function in Step 5.

itml = additem(grp, 'Saw-toothed Waves.Real8")

itml =
OPC Item Object: Saw-toothed Waves.Real8
Object Parameters
Parent: Group0
AccessRights: read/write

2-5

2 Quick Start: Using OPC Data Access Functions

2-6

DataType: double
Object Status

Active: on
Data:

Value:

Quality:

Timestamp:

You can add multiple items to the group in one additem call, by specifying multiple ItemID values in
a cell array.

itms = additem(grp,{'Triangle Waves.Real8',
'Triangle Waves.UInt2'})

itms =
OPC Item Object Array:
Index: DataType: Active: ItemID:
1 double on Triangle Waves.Real8
2 uintl6 on Triangle Waves.UInt2

For details on adding items to groups, see “Create Data Access Item Objects” on page 6-6.

Step 7: View All Item Values

The group object lets you read and write values from all items in the group, and log data to memory
and/or disk.

The Value, Quality, and Timestamp values of items continually update as long as you have
Subscription enabled. Subscription controls whether data change events are sent by the OPC server
to the toolbox, for items whose values change. UpdateRate and DeadbandPercent define how often
the items must be queried for a new value, and whether all value changes or only changes of a
specified magnitude are sent to the toolbox. For details on Subscription, see “Data Change Events
and Subscription” on page 7-9.

By observing the data for a while, you will see that the three signals appear to have similar ranges.
This indicates that you can visualize the data in the same axes when you plot it in Step 10.

In Step 9 you will configure a logging task and log data for the three items.

Use the read function with a group object as the first parameter to read values from all items in a
group. The read function is discussed in detail in “Read and Write Data” on page 7-2.

Step 8: Configure Group Properties for Logging

Now that your dagroup object contains items, use the group to control the interaction of those items
with the server. In this step, configure the group to log data from those items for 2 minutes at 0.2-
second intervals. You can use the logged data in Step 9 to visualize the signals produced by the
Matrikon Simulation Server.

OPC Data Access Servers provide access only to “live” data (the last known value of each server item
in their name space). In many cases, a single value of a signal is not useful, and a time series
containing the signal value over a period of time is helpful in analyzing that signal or signal set. OPC
Toolbox software allows you to log all items in a group to disk or memory, and to retrieve that data for
analysis in MATLAB.

Access Data at Command Line

You configure a logging session using the dagroup object. By modifying the properties associated
with logging, you control how often the data must be sent from the server to the client, how many
records the group must log, and where to log the data.

Use the set function to set OPC Toolbox object properties. From the command line you can calculate
the number of records required for the logging task.

logDuration = 2*60;

logRate = 0.2;

numRecords = ceil(logDuration./logRate);
grp.UpdateRate = logRate;
grp.RecordsToAcquire = numRecords;

Step 9: Log OPC Server Data

Now that you configured the dagroup object's logging properties, your object can log the required
amount of data to memory.

Use the start function with the required dagroup object to start a logging task.

start(grp)

The logging task occurs in the background. You can continue working in MATLAB while a logging
task is in operation. The logging task is unaffected by other computations occurring in MATLAB, and
MATLAB processing is not blocked by the logging task. You can instruct MATLAB to wait for the
logging task to complete, using the wait function.

wait(grp)

Step 10: Plot the Data

After logging finishes, transfer data from the toolbox engine to the MATLAB workspace using the
getdata function, which provides two types of output, depending on its 'datatype' argument. For
details, see the getdata reference page. In this case you retrieve the data into separate arrays, and
plot the data.

This example produces the figure:

[logIDs, logVal, logQual, logTime, logEvtTime] = ...
getdata(grp, 'double');

plot(logTime, logVal)

axis tight

datetick('x"', "keeplimits")

legend(logIDs)

Notice how the three signals seem almost completely unrelated, except for the period of the two
Real8 signals. The peak values for each signal are different, as are the periods for the two Triangle
Waves signals. By visualizing the data, you can gain some insight into the way the Matrikon OPC
Simulation Server simulates each tag. In this case, it is apparent that Real8 and UInt2 signals have
a different period.

Step 11: Clean Up

After finishing an OPC task, you should remove the task objects from memory and clear the MATLAB
workspace of the variables associated with these objects.

2-7

2 Quick Start: Using OPC Data Access Functions

2-8

When using OPC Toolbox objects at the MATLAB command line or from your own functions, you must
remove them from the OPC Toolbox engine using the delete function. Note that when you delete a
toolbox object, the children of that object are automatically removed from the toolbox engine. In this
example, there is no need to delete grp and itm, as they are children of da.

disconnect(da)
delete(da)

clear da grp itm
close(gcf)

OPC Toolbox object management is discussed in detail in “Delete Objects” on page 6-17.

Quick Start: Using the OPC Data Access
Explorer

The best way to learn about the capabilities of OPC Toolbox software is to look at a simple example.
This topic shows the basic steps required to log data from an OPC data access server for analysis and
visualization. The example uses the OPC Data Access Explorer app provided in the toolbox, to show
the process, and includes information on how to achieve the same results from the command line.

This topic contains cross-references to other sections in the documentation that provide more in-
depth discussions of the relevant concepts.

3 Quick Start: Using the OPC Data Access Explorer

Access Data with OPC Data Access Explorer

3-2

In this section...

“Procedure Overview” on page 3-2

“Step 1: Open the OPC Data Access Explorer” on page 3-2
“Step 2: Locate Your OPC Server” on page 3-3

“Step 3: Create an OPC Data Access Client Object” on page 3-5
“Step 4: Connect to the OPC Server” on page 3-7

“Step 5: Create an OPC Data Access Group Object” on page 3-8
“Step 6: Browse the Server Name Space” on page 3-10

“Step 7: Add OPC Data Access Items to the Group” on page 3-12
“Step 8: View All Item Values” on page 3-14

“Step 9: Configure Group Properties for Logging” on page 3-15
“Step 10: Log OPC Server Data” on page 3-17

“Step 11: Plot the Data” on page 3-17

“Step 12: Clean Up” on page 3-19

Procedure Overview

This section illustrates the basic steps required to create an OPC Toolbox Data Access application by
visualizing the Triangle Wave and Saw-toothed Wave signals provided with the Matrikon OPC
Simulation Server. The application logs data to memory and plots that data, highlighting uncertain or
bad data points. By visualizing the data you can more clearly see the relationships between the
signals.

Note To run the sample code in the following examples, you must have the Matrikon OPC Simulation
Server available on your local machine. For information on installing this, see “Install an OPC DA or
HDA Simulation Server for OPC Classic Examples” on page 1-14. The code requires only minor
changes to work with other servers.

The example in this topic uses the OPC Data Access Explorer app. In addition, each step contains
information on how to complete that step using command-line code. The entire example is contained
in the example file opcdemo_quickstart.

Step 1: Open the OPC Data Access Explorer

Double-click the OPC Data Access Explorer in the Apps menu. The app opens with no hosts, servers,
or toolbox objects created. The following figure shows the main components of the OPC Data Access
Explorer.

Access Data with OPC Data Access Explorer

Hosts and 0PC 0PC Toolbox
Servers pane

-} OPC Data Acc =55 Explorer - [Untitled.osf] = |EI|5|
File Host Ser Client Group Eem Help
4
g B o= g @ & X 7 & 2% [maTLaBoPC Clients
S OPC Metwark =Ma properties=
=Mo properies=

Select between
0PC Servers
and Namespace
VIEW o { OPC Servers | Namespace

Ready v

Object Properties
pane

Obiecis pane

In the following steps, you will fill each of the panes with information required to log data, and you
will log the data, by creating and interacting with OPC Toolbox objects.

Command-Line Equivalent

To open the OPC Data Access Explorer from the command line, type opcDataAccessExplorer at
the MATLAB prompt.

Step 2: Locate Your OPC Server

In this step, you obtain two pieces of information that the toolbox needs to uniquely identify the OPC

server that you want to access. You use this information when you create an OPC Data Access Client

object (opcda client object), described in “Step 3: Create an OPC Data Access Client Object” on page
3-5.

The first piece of information that you require is the hostname of the server computer. The hostname
(a descriptive name like PlantServer or an IP address such as 192.168.16.32) qualifies that
computer on the network, and is used by the OPC Data Access protocols to determine the available
OPC servers on that computer, and to communicate with the computer to establish a connection to
the server. In any OPC Toolbox application, you must know the name of the OPC server’s host, so that
a connection with that host can be established. Your network administrator will be able to provide
you with a list of hostnames that provide OPC servers on your network. In this example, you will use
localhost as the hostname, because you will connect to the OPC server on the same machine as the
client.

The second piece of information that you require is the OPC server’s server ID. Each OPC server on a

particular host is identified by a unique server ID (also called the Program ID or ProgID), which is
allocated to that server on installation. The server ID is a character vector, usually containing periods.

3-3

3 Quick Start: Using the OPC Data Access Explorer

3-4

Although your network administrator will be able to provide you with a list of server IDs for a

particular host, you can query the host for all available OPC servers. “Discover Available Data Access

Servers” on page 5-2 discusses how to query hosts from the command line.
Using the OPC Data Access Explorer you can browse a host using the following steps:

1 In the Hosts and OPC Servers pane, click the Add host icon to open the Host name dialog,
shown below.

<} OPC Data Access Exp
File Host Server Clie <) Host name x|

dick

2 In the Host name dialog, enter the name of the host. In this case, you can use the "localhost"
alias.

localhost

Click OK. The hostname will be added to the OPC Network tree view, and the OPC servers
installed on that host will automatically be found and added to the tree view. Your Hosts and
OPC Servers pane should look similar to the one shown below.

<) OPC Data Access Explorer _ﬁ Md I'IOSI
File Host Serwer Cliemt Group Ikem; Help

i g° Dekte host
¥ 9 &] % Update
[OFC Network ' (reate client

Servers Toolbar

Host F
B‘ ICOMICS. Simulator A View name space

OPC Servers £ metrikon OPC Simulation. 1 by
Softing OPCToolkboxDemo_ServerDa, 1 F
on host & satting E 1

. Property Value | ;

HOSI properhes Hostname localhost r
(when host IF address 127,001 }

Eirovrsahle v

se le(hd) # Servers 3 F
4

LOPC Servers | Mamespace | A{

Ready of

Note that the local host in this example provides three OPC servers. The Server ID for this
example is 'Matrikon.OPC.Simulation.1"'.

Command-Line Equivalent

The command-line equivalent for this step uses the function opcserverinfo.

hostInfo

opcserverinfo('localhost")

hostInfo

Host: 'localhost'
ServerID: {1x3 cell}

Access Data with OPC Data Access Explorer

ServerDescription: {1x3 cell}
OPCSpecification: {'DA2' 'DA2' 'DA2'}
ObjectConstructor: {1x3 cell}

Examining the returned structure in more detail provides the server IDs of each OPC server.
allServers = hostInfo.ServerID'

allServers =
'Matrikon.OPC.Simulation.1'
"ICONICS.Simulator.1'
'Softing.0PCToolboxDemo ServerDA.1'

Step 3: Create an OPC Data Access Client Object

Once you have determined the hostname and server ID of the OPC server you want to connect to, you
can create an opcda client object. The client controls the connection status to the server, and stores
any events that take place from that server (such as notification of data changing state, which is
called a data change event) in the event log. The opcda client object also contains any Data Access
Group objects that you create on the client. For more information on the OPC Toolbox object
hierarchy, see “Toolbox Object Hierarchy for the Data Access Standard” on page 6-2.

With the OPC Data Access Explorer, you can create a client directly from the Hosts and OPC
Servers pane.

Right-click the Matrikon server node and choose Create client. A client will be created in the OPC
Toolbox Objects pane, as shown in the following figure.

<), OPC Data Access Explorer

File Host Server Client Group Ifem Help

g ol ek s

QPC Metweork

F
E—%Iocalhost p . %+ @|x|g|§‘ ﬁ@t
(click ol MATLAB OPC Clierts
{ Q', localhostMatrikon OPC Simulstion 1
Property | alue | j
Hosthisme |locathost | }
e e - TS] B

The name of the client (displayed in the OPC Toolbox Objects pane) is Host/ServerID, where
Host is the hostname and ServerlID is the Server ID associated with that client. In this example, the
client’s name is ' localhost/Matrikon.OPC.Simulation.1'

Once you have created the client, you can view the properties of the client object in the Object
Properties pane, as shown in the next figure.

3 Quick Start: Using the OPC Data Access Explorer

& & a| X2 & 8¥ |locanostMatiikon.oPC.Simulation.d
L\ MATLAE OPC Clierts

Mame: I\DEE\MDSUMEtnkDH.OPC.S\mu\EIIUn1

E,“, IncalhostMatrikon OPC Simulation 1

Tag |

[OPC Server

Server host: [locahost

Server D [Metrikon OPC.Simulation. Select

Timeout floa s

Status: Discanrected Conrect Discornniect
~Evert Log

Menditum numier of recards: 1000

Current size; 0 recordls Update WVigw Clear

[Callback function:

Mame:

Calkack: |@opccalloack Open In Editor
ShutdawnFen

TimerFen Called when an error evert occurs. An errar evert is generated when
an asynchronous transaction falls

Alternative Methods for Creating Clients

You can create a client in the OPC Data Access Explorer by using any of the following methods:

* Select the MATLAB OPC Clients node in the OPC Toolbox Objects pane and click Add Client
in the OPC Toolbox Objects toolbar.

* Choose Add from the Client menu.

* Right-click the MATLAB OPC Clients node in the OPC Toolbox Objects tree and select Create
Client.

If you select one of these methods, a dialog appears requesting the hostname and server ID.

Click to select
ServerlD from list
of servers on host.

<} Add client X|

Host narne:

Cient will attem pt

to connect when Server [D: Select |

crea tEd_- I~ | Connect after cresting ORC Client

Ok I Cancel |

When you supply a hostname, you will be able to select the Server ID from a list, by clicking Select.
Using the Add client dialog, you can also automatically attempt to connect to the server when the
client is created, by checking Connect after creating OPC Client before clicking OK.
Command-Line Equivalent

The command-line equivalent of this step involves using the opcda function, specifying the hostname
and Server ID arguments.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1l")

3-6

Access Data with OPC Data Access Explorer

da =
OPC Data Access Object: localhost/Matrikon.OPC.Simulation.1l
Server Parameters

Host: localhost
ServerlID: Matrikon.OPC.Simulation.1
Status: disconnected
Object Parameters
Group: 0-by-1 dagroup object

For more information on creating clients, see “Create OPC Toolbox Data Access Objects” on page 6-
2.

Step 4: Connect to the OPC Server

OPC Data Access Client objects are not automatically connected to the server when they are created.
This allows you to fully configure an OPC Toolbox object hierarchy (a client with groups and items)
prior to connecting to the server, or without a server even being present.

Note The Add Client dialog described in “Alternative Methods for Creating Clients” on page 3-6 can
connect the client to the server after creating the client object.

To connect the client to the server, you can use the OPC Toolbox Objects toolbar, shown in the
following figure.

@ Create client
Add group
Add item
Delete object
Update
(onned

0PC Toolbox
Objecis toolbar

Disconnedt

Yo, %10 X 6, 0,4

Click Connect in the OPC Toolbox Objects toolbar. If the client is able to connect to the server, the
icon for that client in the OPC Toolbox Objects tree will change to show that the client is connected.
If the client could not connect to the server, an error dialog will show any error message returned.
See “Troubleshooting” on page 1-17 for information on why a client may not be able to connect to a
server.

When you connect an opcda client object to the server associated with that client, the server node in
the Hosts and OPC Servers pane also updates to show that the server has a connection to a client in
the app. With that connection, the properties of the server are displayed in the Hosts and OPC
Servers pane. For this example, a typical view of the app after connecting to a client is shown in the
next figure.

3 Quick Start: Using the OPC Data Access Explorer

~) OPC Data Access Explorer

Fle Host Server Client Group L= Help "

F & o2&k & o a | X || #|s® |iocanostmatrikan.opc.g)
OPC Netwrork <l MATLAE OPC Clierts
= Neme: [Iocalhostiatrik
Tag: P
. -
& P
K softing OPCToolhoxDemo_ServerDa1 OPC Server 3
Server host. [icanost of
Property Value
Bandwidth 0o Server ID, Mamkun.?
CurrentTime 2004-03-18 17:23.47
LestUpdeteTime |2004-03-18 17:23.38 Timeout o0 <
PublicGroups J
OPC Server ServerStatus Running Stetus s
Softwareversion [1.1.307
i StartTime 2004-03-18 09:30:18 Event Log
roperties
p p Supportedinterfaces |OPCComman t 4
(OPCServer Mendmurm rumber of recst
IOPCErowseServerAddres... P
IConnectionPaintCortainer (O et 1 Tl
IOPCHemPraperties |
IPersistFile ~Callback funclmnsq
vendorinfo Matrikon Consulting Inc (7... s J
cwwna:}
ShutdownFen
TimerFen Called 4,
& asy?
CPC Servers | Mamespace 42
Ready 3

The OPC server properties include diagnostic information, such as the supported OPC Data Access
interfaces, the time the server was started, and the current server status.

Command-Line Equivalent

You use the connect function to connect an opcda client object to the server at the command line.

connect(da)

Step 5: Create an OPC Data Access Group Object

You create Data Access Group objects (dagroup objects) to control and contain a collection of Data
Access Item objects (daitem objects). A dagroup object controls how often the server must notify
you of any changes in the item values, control the activation status of the items in that group, and
define, start, and stop logging tasks.

To create a dagroup object, click Add group in the OPC Toolbox Objects toolbar. A group is
created and automatically named, either by the OPC server or by OPC Toolbox software.

3-8

Access Data with OPC Data Access Explorer

' il(ﬁ' X S _ﬁlgg Group0

L\ MATLAE OPC Clierts

Properties | readintie | Logging |
= E.', localhostMatrikon OPC Simulation. 1

[arne: IGroupD

Ta: I

[V active

~Subscription

[V Subscribed [update on data change)

UpdateRate: ID.S s Deadband: ID.D %

Time higs: 0.0 minutes

i~ Callback function

Callback:

ReadisyncFon
RecordsdcouiredFon

WritedsyncFon

i@opcoallback

Called when when an asynchronous operation is cancelled.

Open In Editar |

On their own, dagroup objects are not useful. Once you add items to a group, you can control those
items, read values from the server for all the items in a group, and log data for those items, using the
dagroup object. In Step 6 you browse the OPC server for available tags. Step 7 involves adding the

items associated with those tags to the dagroup object.

Command-Line Equivalent

To create dagroup objects from the command line, you use the addgroup function. This example

adds a group to the opcda client object already created.

grp = addgroup(da)

grp =
OPC Group Object: Group®
Object Parameters

GroupType: private

Item: 0-by-1 daitem object
Parent:

UpdateRate: 0.5

DeadbandPercent: 0
Object Status

Active: on
Subscription: on
Logging: off
LoggingMode: memory

localhost/Matrikon.0OPC.Simulation.1

See “Create Data Access Group Objects” on page 6-4 for more information on creating group

objects from the command line.

3 Quick Start: Using the OPC Data Access Explorer

3-10

Step 6: Browse the Server Name Space

All OPC servers provide access to server items via a server name space. The name space is an
ordered list of the server items, usually arranged in a hierarchical format for easy access. A server
item (also known as a tag) is a measurement or data point on a server, providing information from a
device (such as a pressure sensor) or from another software package that supplies data through OPC
Data Access (such as a SCADA package).

Note If you know the item IDs of the server items you are interested in, you can skip this section and
proceed to “Step 7: Add OPC Data Access Items to the Group” on page 3-12. In this example,

assume that you do not know the exact item IDs, although you do know that you want to log
information from the Saw-toothed Waves and Triangular Waves provided by the Matrikon Simulation
Server.

The Namespace tab of the Hosts and Servers pane allows you to graphically browse a server’s
name space. Because most OPC servers contain thousands of server items, retrieving a name space
can be time consuming. When you connect to a server for the first time, the name space is not
automatically retrieved. You have to request the name space using one of the View buttons in the
Server Namespace toolbar, as shown in the following figure.

Server Namespace 1 E- View name space
100 /b0 e Eo: | -)
= Additem

& Simulation temns
& Configured Aliazes
@ Clierts

PN

Click View hierarchical namespace to retrieve the hierarchical name space for the Matrikon OPC
Server. A tree view containing the Matrikon name space is shown in the pane. Your pane should look
similar to the following figure.

Branch node K

(contains B, Matriko

other nodes) ==—ften Hems
& Configured Aliazes

I.euf node & Clierts

(does not
contain nodes)

=No properties=

OPC Servers Namespace I

Note If you choose to view the name space as flat, you get a single list of all server items in the name
space, expanded to their fully qualified names. A fully qualified name can be used to create a daitem
object.

Browsing the name space using the app also provides some property information for each server
item. The properties include the published OPC Item properties such as Value, Quality, and

Access Data with OPC Data Access Explorer

Timestamp, plus additional properties published by the OPC server that may provide more
information on that particular server item. For a list of standard OPC properties and an explanation of
their use, see “OPC DA Server Item Properties” on page B-2.

In this example, you need to locate the Saw-toothed Waves and Triangle Waves signals in the
Matrikon Simulation Server. You can achieve this using the following steps:
Ensure that you are viewing the hierarchical name space.

2 Expand the Simulation items node. You will see all the signal types that the Matrikon Server
simulates.

3 Expand the Saw-toothed Waves node. A number of leaf nodes appear. A leaf node contains no
other nodes, and usually signifies a tag on an OPC server.

4 Select the Real8 leaf node. The properties of the server item appear in the properties table
below the name space tree, as shown in the following figure.

Al
_I
[
o . : o [.
ltem Canonical ... |double >— ltem (EII'IOI'IiCEII
" e D o ettt D
ataType
[term Guality Good: Mon-specific YP
ltem Timestamp (05 July 2004 02:13:50 PI'ONTW
ftem Access Ri...|read
Server ScanR... |01
[tern EUI Type 0
[tern EUInfo [
ttem Description [Random value. LI
OPC Servers Namespace I

Note the Item Canonical DataType property, which is double. The Canonical DataType is
the data type that the server uses to store the server item’s value.

5 Select the UInt2 leaf node. You will notice that the properties update, and the Item Canonical
Datatype property for this server item is uint16. (MATLAB denotes integers with the number
of bits in the integer, such as uint16; the Matrikon Server uses the COM Variant convention
denoting the number of bytes, such as UInt2.)

You can continue browsing the server name space using the Server Namespace pane in the app.
One unique characteristic of the Matrikon Simulation Server is that you can view the connected
clients through the name space, by selecting the Clients node in the root of the name space.

In Step 7, you add three items to your newly created group object, using the Server Namespace
pane.

Command-Line Equivalent

From the command line, you can browse the server name space using the serveritems function.
You need to supply a connected opcda client object to the serveritems function, and an optional
character vector argument to limit the returned results. The character vector can contain wildcard
characters (*). An example of using serveritems is as follows.

sawtoothItems = serveritems(da, '*Saw*')

3-11

3 Quick Start: Using the OPC Data Access Explorer

3-12

sawtoothItems =
'Saw-toothed Waves.
'Saw-toothed Waves.Intl'
'Saw-toothed Waves.Int2'
'Saw-toothed Waves.Int4'
'Saw-toothed Waves.Money'
'Saw-toothed Waves.Real4'
'Saw-toothed Waves.Real8'
'Saw-toothed Waves.UIntl'
'Saw-toothed Waves.UInt2'
'Saw-toothed Waves.UInt4'

The command-line equivalent for obtaining the server item properties is serveritemprops. See the
serveritemprops reference page for more information on using the function.

Step 7: Add OPC Data Access Items to the Group

Now that you have found the server items in the name space, you can add Data Access Item objects
(daitem object) for those tags to the dagroup object you created in Step 5. A daitem object is a link
to a tag in the name space, providing the tag value, and additional information on that item, such as
the Canonical Data Type.

Using the app, you create items directly from the name space tree, using a context menu on each
node in the tree.

Browse to Simulated Items > Saw-toothed Waves > Real8, and right-click that node to bring up
the context menu. Selecting Add to from the context menu provides you with a list of created groups
for the item associated with that server, and a menu item to create a New group (and add the item to
that group).

The menu displayed for this example is shown in the following figure.

4 y
L
. =

A (et marLag

= E.', loc:a

Groupd

r
&

- .
Property “alug Mew group L

ltern Canonical DataType [double | r

[tem Yalue 125 6637073505001 |
S Sy ————— |]

Click Group0 to add the item to the already existing group that you created in Step 5. A daitem
object is created in the OPC Toolbox Objects pane. The following figure shows the newly created
item highlighted, with the properties of the item shown in the Properties pane.

Access Data with OPC Data Access Explorer

& & | = e | g | 2° |saw-toothed Waves.Reals
L MATLAB OPC Clients
= E_ localhostMatrikon OPC Simulation. 1
E—@ Groupd

Mame: ISaw-toothed Wiaves Reald

Ta: I

[V active

MATLAE datatype: I double =~ l

Server Assigned Properties

Access rights: readbwrite

Scan rate: 0ol =
Dratatype: double
Data
“alue: 197 9203391 2475992 Read |

Cuality: Good: Mon-specific

Timestamp: 055225

Wit Wirite

Read a Value from the Server

A daitem object initially contains no information about the server item that it represents. The
daitem object only updates when the server notifies the client of a change in status for that item (the
notification is called a data change event) or the client specifically reads a value from the server.
Using the app, you can force a read of the item by clicking Read in the Properties pane of the
required item.

Click Read. The Value, Quality, and Timestamp fields in the app will update. Value contains the
last value that the server read from that particular item. Quality provides a measure of how
meaningful Value is. If Quality is Good, then the Value can be trusted to be the same as the device
or object to which the item refers, but only at the time provided by the Timestamp field. If Quality is
anything other than Good, then the Value of the item is questionable.

Each time you read or obtain data from the server through a data change event, the server will
provide you with updated Value, Quality, and Timestamp values.

Add More Items to the Group

Using the Namespace pane, expand the Triangle Waves node and add items for the Real8 and
UlInt2 server items. You will then have three items associated with your dagroup object. In Step 8§,
you configure a logging session for that group. You then log data in Step 9 from the three items you
just created, and visualize the data in Step 10.

Command-Line Equivalent

You use the additem function to add items to a dagroup object. You need to pass the dagroup
object to which the items will be added, and the fully qualified item ID as a character vector. The item
IDs were found using the serveritems function in Step 6.

itml

additem(grp, 'Saw-toothed Waves.Real8')

itml =
OPC Item Object: Saw-toothed Waves.Real8
Object Parameters

3-13

3 Quick Start: Using the OPC Data Access Explorer

3-14

Parent: Group®
AccessRights: read/write
DataType: double
Object Status
Active: on
Data:
Value:
Quality:
Timestamp:

You can add multiple items to the group in one additem call, by specifying multiple ItemID values in
a cell array.

itms = additem(grp, {'Triangle Waves.Real8"',
'Triangle Waves.UInt2'})

itms =
OPC Item Object Array:
Index: DataType: Active: ItemID:
1 double on Triangle Waves.Real8
2 uintl6 on Triangle Waves.UInt2

For more information on adding items to groups, see “Create Data Access Item Objects” on page 6-
6.

Step 8: View All Item Values

You can view the Value, Quality, and Timestamp for each item using the item properties pane.
However, that view only provides access to one item at a time. The group object is designed to allow
you to read and write values from all items in the group, and to log data to memory and/or disk. You
use the Group Read/Write pane to view the values of the items you created in Step 7 to determine
the approximate range of values that each item value varies over. The information from this pane will
help you to verify that the data is updating, and whether you can plot the data in one set of axes or in
subplots.

Click Group0 in the OPC Toolbox Objects pane. Select the Read/Write tab in the top of the Group
properties pane. The OPC Toolbox Objects pane should now look similar to the one shown in the
following figure.

Access Data

with OPC Data Access Explorer

hmpleCode'UserDoc' Untitled.osf*]

1 Help

=10l x|

b Y

verDa

g @ d XS] F s

Groupl

L MATLAE OPC Clients
= E_ localhostMatrikon OPC Simulation 1

Properties Readifrite I Loggingl

¥ Active
&1 Saw-tocthed Waves Reald
& Triangle Waves Reald
& Triangle Waves Unt2

~Subscription

Control how often
b grOUp receives
updated values.

UpdateRate: ID.S s Deadband: ID.D %

rtem data —

Refresh |

Clear Write I

ity

5 Group value,
I ftetn IC Active “alue Guality Timestamp | Wyrite Valuel e qUﬂI“Y, a I'Id
Saw-toothed Wave. . ¥ |[755398171 ... |Good: Mon-specific |04:23:06 r st I'I
Triangle Waves Reald ¥ [160.221226... |Good: Mon-specific 04:23:06 ime ump shown.
Triangle Waves Lnt2 W 110 Good: Mon-specific |04:23:06 -

* Enter value fo
write.

Select items to be
updated and
written.

Z)

The Value, Quality, and Timestamp values in the table of items will continually update as long as
you have Subscription enabled. Subscription controls whether data change events are sent by the
OPC server to the toolbox, for items whose values change. UpdateRate and DeadbandPercent define
how often the items must be queried for a new value, and whether all value changes or only changes
of a specified magnitude are sent to the toolbox. For more information on Subscription, see “Data
Change Events and Subscription” on page 7-9.

By observing the data for a while, you will see that the three signals appear to have similar ranges.
This indicates that you can visualize the data in the same axes when you plot it in Step 11.

You can also use the Group Read/Write pane for writing values to many items simultaneously.
Specity a value in the Write column of the Item data table for each item you want to write to, and
click Write, to be able to write to those items.

In Step 10 you will configure a logging task and log data for the three items.
Command-Line Equivalent

You can use the read function with a group object as the first parameter to read values from all items
in a group. The read function is discussed in more detail in “Read and Write Data” on page 7-2.

Step 9: Configure Group Properties for Logging

Now that your dagroup object contains items, you can use the group to control the interaction of
those items with the server. In this step, you configure the group to log data from those items for 2
minutes at 0.2-second intervals. You will use the logged data in Step 11 to visualize the signals
produced by the Matrikon Simulation Server.

3-15

3 Quick Start: Using the OPC Data Access Explorer

3-16

OPC Data Access Servers provide access only to "live" data (the last known value of each server item
in their name space). In many cases, a single value of a signal is not useful, and a time series
containing the signal value over a period of time is helpful in analyzing that signal or signal set. OPC
Toolbox software allows you to log all items in a group to disk or memory, and to retrieve that data for
analysis in MATLAB.

You configure a logging session using the dagroup object. By modifying the properties associated
with logging, you control how often the data must be sent from the server to the client, how many
records the group must log, and where to log the data. This information is summarized in the
Logging pane of the dagroup object properties in the app.

Select the Logging tab in the Properties pane. The following figure shows the Logging pane for the
dagroup object created in this example.

Groupl
Praperties | Reactite Logging |
Update rate: ID.S s Specrfy upduie‘
L rate and duration

Murnber of records to log: |120 [Minimum logging durstion: §0.0=) Of quil’lg 'USI(

Destinstion o |

(* Memary Disk " Disk and Memary Sm(ify qued

File name: |opcdatalog.o|f Broyvse | —dﬂh deshnuhon
opfions.
{ Append T Oversvrite @) Index
Export to workspace options Plat options]
Plot tems in
" Structure Variable name: I uiLogData 1
el ' Same axes Specrfy dﬂh

* Array Datatype: Ic:ell vl " Separste axes (subplot) — expori ﬂl'ld PIO'

behavior.
Yariahle Names... | [Wark bad qualty
¥ Mark repeat gquality
Start | 0% Stop (ontrol logging task

Records available: 0 Fluzty | b 0 I'd perform dﬂh

export/visualization.
& Useallrecords (Uselast |1D recards Export | Plat |

Using the Logging pane, configure the logging session using the following steps:

1 Set Update rate to 0.2.

2 Set Number of records to log to 600. Because you want to log for 2 minutes (120 seconds) at
0.2-second update rates, you need 600 (i.e., 120/0.2) records.

You can leave the rest of the logging properties at their default values, because this example uses
data logged to memory.

In Step 10 you log the data. In Step 11 you will visualize the data.
Command-Line Equivalent

You use the set function to set OPC Toolbox object properties. From the MATLAB command line, you
can calculate the number of records required for the logging task.

logDuration = 2*60;
logRate = 0.2;

Access Data with OPC Data Access Explorer

numRecords = ceil(logDuration./logRate)
set(grp, 'UpdateRate',logRate, 'RecordsToAcquire',numRecords);

Step 10: Log OPC Server Data

In Step 9 you configured the dagroup object logging properties. Your object is now ready to log the
required amount of data to memory.

Click Start in the Logging tab. The logging task begins, and the OPC Toolbox software engine
receives and stores the data from the OPC server. The progress bar indicates the status of the logging
task, as shown in the following figure.

Ol e ston
Records available: 35 Flush |
{+ Use allrecords & Uselast |1D records Expart I Plot |

Note The logging task occurs in the background. You can continue working in MATLAB while a
logging task is in operation. The logging task is not affected by any other computation taking place in
MATLAB, and MATLAB is not blocked from processing by the logging task.

Wait for the task to complete before continuing with Step 11.

Command-Line Equivalent

You use the start function with the required dagroup object to start a logging task.
start(grp)

Although the logging operation takes place in the background, you can instruct MATLAB to wait for
the logging task to complete, using the wait function.

wait(grp)

Step 11: Plot the Data

In this introductory example, you use the app to visualize the data logged in Step 10. In a more
complex task, you would export the logged data to the workspace and use MATLAB functions to
analyze and interpret the logged data.

When the logging task stops, the Logging pane will update to show that the task is complete. An
example of the logging status portion of the Logging pane after a completed task is shown in the
following figure.

st | T |
Records available: 120 Flush |

{* Useall records © Use last |1D records Export | Plat I

3-17

3 Quick Start: Using the OPC Data Access Explorer

3-18

To view the data from the app, click Plot. The logged data will be retrieved from the toolbox engine
and displayed in a MATLAB figure window. The format of the displayed data and annotation options
are controlled by settings in the Plot options frame of the Logging pane. By default, the plot will be
annotated with any data points that have a Quality other than Good. Values whos Quality is Bad are
annotated with a large red circle with a black border, and Values with Quality of Repeat are
annotated with a yellow star. You should always view the Quality returned with the Value of an item to
determine if the Value is meaningful or not. The relationship between the Value and Quality of an item
is discussed in “OPC Data: Value, Quality, and TimeStamp” on page 8-2.

An example of the plotted data is shown in the next figure.

2 Figure 1 : (=]]
N

File Edit Wew Insert Tools Desktop ‘Window Help

DedsE k| RaQa&® € 08 0O

200 F i

L 15T
Saw-tocthed Waves. Reald)
Triangle Waves. Heald i
Triangle Waves Ulnt2

160 -

Quality of this 140 _
value is 'Repeat’
(repeated data) =0
100
80
Quality of this aoll
value is 'Bad’

4] LA
002 0503 004

Note Your plotted data will almost certainly not look like the one shown here, because the logging
task was executed at a different time.

Notice how the three signals seem almost completely unrelated, except for the period of the two
Real8 signals. The peak values for each signal are different, as are the periods for the two Triangle
Waves signals. By visualizing the data, you can gain some insight into the way the Matrikon OPC
Simulation Server simulates each tag. In this case, it is apparent that Real8 and UInt2 signals have
a different period.

Command-Line Equivalent

When your logging task has completed you transfer data from the toolbox engine to the MATLAB
workspace using the getdata function, which provides two types of output, depending on the
"datatype' argument. For more information see getdata in the reference pages. In this case you
retrieve the data into separate arrays, and plot the data.

The example below reproduces the figure display that you get when you click Plot.

[LogIDs, logVal,logQual,logTime,logEvtTime] = ...
getdata(grp, 'double');

Access Data with OPC Data Access Explorer

plot(logTime, logVal);

axis tight

datetick('x"', "'keeplimits")
legend(logIDs)

Step 12: Clean Up

When you are finished with an OPC task, you should remove the task objects from memory and clear
the MATLAB workspace of the variables associated with these objects. The OPC Data Access Explorer
app automatically deletes all objects that it creates from the toolbox engine. If you work only in the
OPC Data Access Explorer, you do not need to perform any further cleanup other than to close the
app. You close the app by using the Exit option in the File menu, or by using the Close button in the
title bar. You will be prompted to save the OPC Data Access Explorer session. You can choose to save
the session to an OPC session file (. osT file) for later use, or exit without saving.

Command-Line Equivalent

When you use OPC Toolbox objects from the MATLAB command line, or from your own functions, you
must remove them from the OPC Toolbox software engine using the delete function. Note that when
you delete a toolbox object, the children of that object are automatically removed from the toolbox
engine. In the following example, there is no need to delete grp and itm, as they are children of da.
disconnect(da)

delete(da)

clear da grp itm

close(gcf)

For more details about OPC Toolbox object management, see “Delete Objects” on page 6-17.

3-19

Quick Start: Using OPC Historical Data
Access Functions

The best way to learn about OPC Toolbox capabilities is to look at a simple example. This chapter
illustrates the basic steps required to read data from an OPC Data Historical Access (HDA) server for
analysis and visualization.

This chapter references other sections in the documentation that provide detailed discussions of the
relevant concepts.

4 Quick Start: Using OPC Historical Data Access Functions

Access Historical Data

4-2

In this section...

“HDA Programming Overview” on page 4-2

“Step 1: Locate Your OPC Historical Data Access Server” on page 4-2
“Step 2: Create an OPC Historical Data Access Client Object” on page 4-3
“Step 3: Connect to the OPC Historical Data Access Server” on page 4-3
“Step 4: Retrieve Historical Data” on page 4-3

“Step 5: Plot the Data” on page 4-4

“Step 6: Clean Up” on page 4-4

HDA Programming Overview

This section illustrates the basic steps to create an OPC Toolbox Historical Data Access (HDA)
application by retrieving historical data from the Triangle Wave and Saw-toothed Wave signals
provided by the Matrikon OPC Simulation Server.

Note To run the sample code in the following steps you need the Matrikon OPC Simulation Server on
your local machine. For installation details, see “Install an OPC DA or HDA Simulation Server for OPC
Classic Examples” on page 1-14. The code requires only minor changes to work with other servers.

Step 1: Locate Your OPC Historical Data Access Server

In this step, you obtain two pieces of information that the toolbox needs to uniquely identify the OPC
Historical Data Access server that you want to connect to. You use this information when creating an
OPC Historical Data Access (HDA) client object, described in “Step 2: Create an OPC Historical Data
Access Client Object” on page 4-3.

The first piece of information is the host name of the server computer. The host name (a descriptive
name like "HistorianServer" or an IP address such as 192.168.16.32) qualifies that computer
on the network, and is used by the OPC protocols to determine the available OPC servers on that
computer. In any OPC Toolbox application, you must know the name of the OPC server's host, so that
a connection with that host can be established. Your network administrator can provide a list of host
names that provide OPC servers on your network. In this example, you will use Localhost as the
host name, because you will connect to the OPC server on the same machine as the client.

The second piece of information is the OPC server's server ID. Each OPC server on a particular host
is identified by a unique server ID (also called the Program ID or ProgID), which is allocated to that
server on installation. The server ID is a character vector, usually containing periods.

Although your network administrator can provide a list of server IDs for a particular host, you can
query the host for all available OPC servers. “Discover Available HDA Servers” on page 12-4
discusses how to query hosts from the command line.

Use the opchdaserverinfo function to query from the command line.

Access Historical Data

hostInfo = opchdaserverinfo('localhost"')
hostInfo =
1x4 OPC HDA ServerInfo array:
index Host ServerID HDASpecification Description
1 localhost Advosol.HDA.Test.3 HDA1 Advosol HDA Test Server V3.0
2 localhost IntegrationObjects.0PCSimulator.1l HDAl Integration Objects OPC DA DX HDA Simulator 2
3 localhost IntegrationObjects.0PCSimulator.l HDAl Integration Objects' OPC DA/HDA Server Simulator
4 localhost Matrikon.OPC.Simulation.1 HDA1 MatrikonOPC Server for Simulation and Testing

Examining the returned structure in more detail provides the server IDs of each OPC server.

allServers = {hostInfo.ServerID}

allServers =
Columns 1 through 3

'Advosol.HDA.Test.3"' 'IntegrationObjects.OPCSimulator.1l' ‘'IntegrationObjects.OPCSimulator.1l
Column 4

'Matrikon.OPC.Simulation.1

Step 2: Create an OPC Historical Data Access Client Object

After determining the host name and server ID of the OPC server to connect to, create an OPC HDA
client object. The client controls the connection status to the server, and stores events that occur
from that server.

Use the opchda function, specifying the host name and Server ID arguments.
hdaClient = opchda('localhost', 'Matrikon.OPC.Simulation.1")

hdaClient =
OPC HDA Client localhost/Matrikon.OPC.Simulation.1:
Host: localhost
ServerID: Matrikon.OPC.Simulation.1
Timeout: 10 seconds

Status: disconnected

Aggregates: -- (client is disconnected)
ItemAttributes: -- (client is disconnected)
Methods

For details on creating clients, see “Create an OPC HDA Client Object” on page 13-4.

Step 3: Connect to the OPC Historical Data Access Server

OPC Historical Data Access Client objects are not automatically connected to the server when they
are created.

Use the connect function to connect an OPC HDA client object to the server at the command line.

connect(hdaClient)

Step 4: Retrieve Historical Data
Generate Historical Data

After connecting to the HDA server you can read historical data values for the Saw-toothed
Waves.Real8 and Triangle Waves.Real8 items. The Matrikon Simulation Server stores data only

4-3

4 Quick Start: Using OPC Historical Data Access Functions

for items that have been activated and read by an OPC Data Access client. For this reason, run this
code to generate and automatically store data in the historian.

Enter the following at the command line:

da = opcda('localhost', 'Matrikon.OPC.Simulation.1");
connect(da);

grp = addgroup(da);

additem(grp, 'Saw-toothed Waves.Real8');
additem(grp, 'Triangle Waves.Real8');
logDuration = 2*60;

logRate = 0.2;

numRecords = ceil(logDuration./logRate);
grp.UpdateRate = logRate;
grp.RecordsToAcquire = numRecords;
start(grp)

wait(grp)

Read a Value from the Historical Data Access Server

To read historical values from an HDA server for a particular time range, use the readRaw function.
This function takes a list of items as well as a start and end time (demarcating the time span) for
which historical data is required.

data = hdaClient.readRaw({'Saw-toothed Waves.Real8', 'Triangle Waves.Real8'},now-100000,now)

data =
1-by-2 OPC HDA Data object:
ItemID Value Start TimeStamp End TimeStamp Quality

Saw-toothed Waves.Real8 200 double values 2010-11-02 12:22:32.981 2010-11-02 12:23:13.363 1 unique quality [Raw]
Triangle Waves.Real8 199 double values 2010-11-02 12:22:33.141 2010-11-02 12:23:13.293 1 unique quality [Raw]

The retrieved historical data contains a Value, Timestamp, and Quality for each data point. To view
these elements from the previous example, use the following instructions:

data.Value

data.TimeStamp
data.Quality

Step 5: Plot the Data

Use this code to generate the plot figure:

plot(data)

axis tight

datetick('x"', "keeplimits")
legend(data.ItemID)

Step 6: Clean Up

After using OPC Toolbox objects at the MATLAB command line or from your own functions, you must
remove them from the OPC Toolbox engine with the delete function. Note that when you delete a
toolbox object, the children of that object are automatically removed from the toolbox engine.

4-4

Access Historical Data

disconnect (hda)
delete(hdaClient)
clear hdaClient data

Details of OPC Toolbox object management are discussed in “Delete Objects” on page 6-17.

Data Access User's Guide

Introduction to OPC Data Access (DA)

» “Discover Available Data Access Servers” on page 5-2
* “Connect to OPC Data Access Servers” on page 5-4

5

Introduction to OPC Data Access (DA)

Discover Available Data Access Servers

5-2

In this section...

“Prerequisites” on page 5-2
“Determine Server IDs for a Host” on page 5-2

Prerequisites

To interact with an OPC server, OPC Toolbox software needs two pieces of information:

* The hostname of the computer on which the OPC server has been installed. Typically the
hostname is a descriptive term (such as 'plantserver') or an IP address (such as
192.168.2.205).

* The server ID of the server you want to access on that host. Because a single computer can host
more than one OPC server, each OPC server installed on that computer is given a unique ID
during the installation process.

Your network administrator will be able to provide you with the hostnames for all computers
providing OPC servers on your network. You may also obtain a list of server IDs for each host on your
network, or you can use the toolbox function opcserverinfo to access server IDs from a host, as
described in the following section.

Determine Server IDs for a Host

When an OPC server is installed, a unique server ID must be assigned to that OPC server. The server
ID provides a unique name for a particular instance of an OPC server on a host, even if multiple
copies of the same server software are installed on the same machine.

To determine the server IDs of OPC servers installed on a host, call the opcserverinfo function,
specifying the hostname as the only argument. When called with this syntax, opcserverinfo
returns a structure containing information about all the OPC servers available on that host.

info = opcserverinfo('localhost')

info
Host: 'localhost'
ServerID: {1x4 cell}
ServerDescription: {1x4 cell}
OPCSpecification: {'DA2' 'DA2' 'DA2' 'DA2'}
ObjectConstructor: {1x4 cell}

The fields in the structure returned by opcserverinfo provide the following information.

Discover Available Data Access Servers

Server Information Returned by opcserverinfo

Field Description

Host Character vector that identifies the name of the host. Note that no
name resolution is performed on an IP address.

ServerID Cell array containing the server IDs of all OPC servers accessible
from that host.

ServerDescription Cell array containing descriptive text for each server.

OPCSpecification Cell array containing the OPC Specification that the server provides.

ObjectConstructor Cell array containing default syntax you can use to create an OPC

Data Access Client object associated with the server. See “Create a
DA Client Object” on page 5-4 for more information.

5-3

5

Introduction to OPC Data Access (DA)

Connect to OPC Data Access Servers

In this section...

“Overview” on page 5-4

“Create a DA Client Object” on page 5-4

“Connect a Client to the DA Server” on page 5-5
“Browse the OPC DA Server Name Space” on page 5-5

Overview

After you get information about your OPC servers, described in “Discover Available Data Access
Servers” on page 5-2 you can establish a connection to the server by creating an OPC Client object
and connecting that client to the server. These steps are described in the following sections.

Note To run the sample code in the following examples, you must have the Matrikon OPC Simulation
Server available on your local machine. For information on installing this, see “Install an OPC DA or
HDA Simulation Server for OPC Classic Examples” on page 1-14. The code requires only minor
changes work with other servers.

Create a DA Client Object

To create an opcda object, call the opcda function specifying the hostname, and server ID. You
retrieved this information using the opcserverinfo function (described in “Discover Available Data
Access Servers” on page 5-2).

This example creates an opcda object to represent the connection to a Matrikon OPC Simulation
Server. The opcserverinfo function includes the default opcda syntax in the ObjectConstructor
field.

da = opcda('localhost', 'Matrikon.OPC.Simulation.l1l');
View a Summary of a Client Object

To view a summary of the characteristics of the opcda object you created, enter the variable name
you assigned to the object at the command prompt. For example, this is the summary for the object
da.

da
da =
summary of OPC Data Access Client Object: localhost/Matriken.OPC.Simulation.
Server Parameters
Host : localhost
ServerID : Matrikeon .OPC,Simulation.d
Status : disconnected
Timeout {10 seconds
(:) Object Parameters
Group i 0-by-1 dagroup object

Event Log : 0 of 1000 events

The items in this list correspond to the numbered elements in the object summary:

Connect to OPC Data Access Servers

1 The title of the Summary includes the name of the opcda client object. The default name for a
client object is made up of the 'host/serverID'. You can change the name of a client object
using the set function, described in “Configure OPC Toolbox Data Access Object Properties” on
page 6-13.

2 The Server Parameters provide information on the OPC server that the client is associated
with. The host name, server ID, and connection status are provided in this section. You connect to
an OPC server using the connect function, described in “Connect a Client to the DA Server” on
page 5-5.

3 The Object Parameters section contains information on the OPC Data Access Group
(dagroup) objects configured on this client. You use group objects to contain collections of items.
Creating group objects is described in “Create Data Access Group Objects” on page 6-4.

Connect a Client to the DA Server

You connect a client to the server using the connect function.

connect(da);

Once you have connected to the server, the Status information in the client summary display will
change from 'disconnected' to 'connected’.

If the client could not connect to the server for some reason (for example, if the OPC server is shut
down) an error message will be generated. For information on troubleshooting connections to an OPC
server, see “Troubleshooting” on page 1-17.

When you have connected the client to the server, you can perform the following tasks:
* Get diagnostic information about the OPC server, such as the server status, last update time, and
supported interfaces. You use the opcserverinfo function to obtain this information.

* Browse the OPC server name space for information on the available server items. See “Browse the
OPC DA Server Name Space” on page 5-5 for details.

* Create group and item objects to interact with OPC server data. See “Create OPC Toolbox Data
Access Objects” on page 6-2 for information.

Browse the OPC DA Server Name Space

A connected client object allows you to interact with the OPC server to obtain information about the
name space of that server. The server name space provides access to all the data points provided by
the OPC server by naming each of the data points with a server item, and then arranging those server
items into a name space that provides a unique identifier for each server item.

This section describes how you use a connected client object to browse the name space and find
information about each server item. These activities are described in the following sections:

* “Get the DA Server Name Space” on page 5-6 describes how to obtain a server name space, or
a partial server name space, using the getnamespace and serveritems functions.

* “Get Information about a Specific Server Iltem” on page 5-7 describes how to query the server
for the properties of a specific server item.

3-5

5

Introduction to OPC Data Access (DA)

Get the DA Server Name Space

You use the getnamespace function to retrieve the name space from an OPC server. You must specify
the client object that is connected to the server you are interested in. The name space is returned to
you as a structure array containing information about each node in the name space.

The example below retrieves the name space of the Matrikon OPC Simulation Server installed on the
local host.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1"');
connect(da);
ns = getnamespace(da)

ns =

3x1 struct array with fields:
Name
FullyQualifiedID
NodeType
Nodes

The fields of the structure are described in the following table.

Field Description
Name The name of the node, as a character vector.
FullyQualifiedID The fully qualified item ID of the node, as a character vector. The fully

qualified item ID is made up of the path to the node, concatenated with
'. ' characters. You use the fully qualified item ID when creating an item
object associated with this node.

NodeType The type of node. NodeType can be 'branch' (contains other nodes) or
'leaf' (contains no other branches).

Nodes Child nodes. Nodes is a structure array with the same fields as ns,
representing the nodes contained in this branch of the name space.

From the example above, exploring the name space shows.
ns(1)

ans =
Name: 'Simulation Items'
FullyQualifiedID: 'Simulation Items'
NodeType: 'branch'
Nodes: [8x1 struct]

ns(3)

ans =
Name: 'Clients’
FullyQualifiedID: 'Clients'
NodeType: 'leaf'
Nodes: T[]

From the information above, the first node is a branch node called 'Simulation Items'. Since itis
a branch node, it is most likely not a valid server item. The third node is a leaf node (containing no
other nodes) with a fully qualified ID of 'Clients'. Since this node is a leaf node, it is most likely a
server item that can be monitored by creating an item object.

To examine the nodes further down the tree, you need to reference the Nodes field of a branch node.
For example, the first node contained within the 'Simulation Items' node is obtained as follows.

Connect to OPC Data Access Servers

ns(1l).Nodes(1)

ans =
Name: 'Bucket Brigade'
FullyQualifiedID: 'Bucket Brigade.'
NodeType: 'branch'
Nodes: [14x1 struct]

The returned result shows that the first node of 'Simulation Items' is a branch node named
'Bucket Brigade', and contains 14 nodes.

ns(1l).Nodes(1).Nodes(9)

ans =
Name: 'Real8'’
FullyQualifiedID: 'Bucket Brigade.Real8'
NodeType: 'leaf'
Nodes: []

The ninth node in 'Bucket Brigade' is named 'Real8"' and has a fully qualified ID of 'Bucket
Brigade.Real8"'. You use the fully qualified ID to refer to that specific node in the server name
space when creating items with OPC Toolbox software.

You can use the flatnamespace function to flatten a hierarchical name space.
Get Information about a Specific Server Iltem

In addition to publishing a name space to all clients, an OPC server provides information about the
properties of each of the server items in the name space. These properties provide information on the
data format used by the server to store the server item value, a description of the server item, and
additional properties configured when the server item was created. The additional properties can
include information on the range of the server item, the maximum rate at which the server can
update that server item value, etc. See “OPC DA Server Item Properties” on page B-2.

You access a property using a defined set of property IDs. A property ID is simply a number that
defines a specific property of the server item. Property IDs are divided into three categories:

* “OPC Specific Properties” on page B-4 (1-99) that every OPC server must provide. The OPC
Specific Properties include the server item’s Value, Quality, and Timestamp. For more information
on understanding OPC data, see “OPC Data: Value, Quality, and TimeStamp” on page 8-2.

* “OPC Recommended Properties” on page B-5 (100-4999) that OPC servers can provide. These
properties include maximum and minimum values, a description of the server item, and other
commonly used properties..

* Vendor Specific Properties (5000 and higher) that an OPC server can define and use. These
properties may be different for each OPC server, and provide a space for OPC server
manufacturers to define their own properties.

You query properties of a server item using the serveritemprops function, specifying the client
object, the fully qualified item ID of the server item you are interested in, and an optional vector of
property IDs that you want to retrieve. If you do not specify the property IDs, all properties defined
for that server item are returned.

Note You obtain the fully qualified item ID from the server using the getnamespace function or the
serveritems function, which simply returns all fully qualified item IDs in a cell array of character
vectors.

5-7

5

Introduction to OPC Data Access (DA)

The following example queries the Item Description property (ID 101) of the server item 'Bucket
Brigade.ArrayOfReal8"' from the example in “Get the DA Server Name Space” on page 5-6.

p = serveritemprops(da, 'Bucket Brigade.ArrayOfReal8',6 101)

p =
PropID: 101
PropDescription: 'Item Description'
PropValue: 'Bucket brigade item.'

For a list of OPC Foundation property IDs, see “OPC DA Server Item Properties” on page B-2.

Using OPC Toolbox Data Access Objects

To interact with an OPC server, you need to create toolbox objects. You create an OPC Data Access
Client (opcda client) object to provide a connection to a particular OPC server. You then create one
or more Data Access Groups (dagroup objects) to control sets of Data Access Items (daitem
objects), which represent links to server items. OPC Toolbox Data Access ohjects are described in
more detail in “Toolbox Object Hierarchy for the Data Access Standard” on page 6-2.

* “Create OPC Toolbox Data Access Objects” on page 6-2

* “Configure OPC Toolbox Data Access Object Properties” on page 6-13

* “Delete Objects” on page 6-17

» “Save and Load Objects” on page 6-18

6 Using OPC Toolbox Data Access Objects

Create OPC Toolbox Data Access Objects

6-2

In this section...

“Overview to Objects” on page 6-2

“Toolbox Object Hierarchy for the Data Access Standard” on page 6-2
“How Toolbox Objects Relate to OPC DA Servers” on page 6-3
“Create Data Access Group Objects” on page 6-4

“Create Data Access Item Objects” on page 6-6

“Build an Object Hierarchy with a Disconnected Client” on page 6-7
“Create OPC Toolbox Data Access Object Vectors” on page 6-8

“Work with Public Groups” on page 6-10

Overview to Objects

The first step in interacting with an OPC server from MATLAB software is to establish a connection
between the server and OPC Toolbox software. You create opcda client objects to control the
connection between an OPC server and the toolbox. Then you create dagroup objects to manage sets
of daitem objects, and then you create the daitem objects themselves, which represent server
items. A server item corresponds to a physical device or to a storage location in a SCADA system or
DCS.

You must create the toolbox objects in the order described above. “Connect to OPC Data Access
Servers” on page 5-4 describes how to create an opcda client object. This section discusses how to
create and configure dagroup and daitem objects.

Toolbox Object Hierarchy for the Data Access Standard

OPC Toolbox DA software is implemented using three basic objects, designed to help you manage
connections to servers and collections of server items. The three objects are arranged in a specific
hierarchy, shown in the following figure.

4\ OPC Taolax chjects

I.J—]—E opcda Client

= Groupd,
oM S GroupE

&+ @ preald Units FICOT Py
& Areal! Units FICO SP
& Areal! Linitd LITOT

1 OPC Data Access Client objects (opcda client objects) represent a specific OPC client
instance that can communicate with only one server. You define the server using the Host and
ServerID properties. The Host property defines the computer on which the server is installed.
The ServerID property defines the Program ID (ProgID) of the server, created when the server
was installed on that host. The opcda client object acts as a container for multiple group objects,
and manages the connection to the server, communication with the server, and server name
space browsing.

Create OPC Toolbox Data Access Objects

2 Data Access Group objects (dagroup objects) represent containers for one or more server
items (data points on the server.) A dagroup object manages how often the items in the group
must be read, whether historical item information must be stored, and also manages creation and
deletion of items. Groups cannot exist without an opcda client object. You create dagroup
objects using the addgroup function of an opcda client object.

3 Data Access Item objects (daitem objects) represent server items. Items are defined by an
item ID, which uniquely defines that server item in the server's name space. A daitem object has
a Value, a Quality, and a TimeStamp, representing the information collected by the server
from an instrument or data point in a SCADA system. The Value, Quality, and TimeStamp
properties represent the information known to the server when the server was last asked to
access information from that instrument.

A dagroup object can only exist “within” an opcda client object. Similarly, a daitem object can only
exist within a dagroup object. You create dagroup objects using the addgroup method of an opcda
client object. You create daitem objects using the additem method of the dagroup object.

How Toolbox Objects Relate to OPC DA Servers

OPC Toolbox software uses objects to define the server that the client must connect to, and the
arrangement of items in groups. The following figure shows the relationship between the OPC
Toolbox Data Access objects and an OPC server.

/ (lient Computer \

MATLAB
3 /Senrer Computer (Host) \ \
0PC Toolbox P o 0PCServer myServer. ID,
M-file Functions P s
T olxdu Obied F-E1 Areali
«" | initiafes connection B Urita,
: L ~ to Server & Ficot
OPC Toolbox Engine ° @ Autotan
& oy
o\ OPG Tgalbgy abject - -
iy 1l -r<2
FoUpA, —— - & FICo2
= Grogal . . .
ey [] daen dbie s S
& Areant UMA FIC01 5P link to a Server ltem| L& uritg
&1 preall Units LITO1
0PC Data A
0PC Data Access e
(OM/DCOM
\ COM/DCOM Y, \L / | /
l Network [

The opcda client object establishes the connection between OPC Toolbox software and the OPC
server, using OPC Data Access Specification standards. The standards are based on Microsoft COM/
DCOM interoperability standards.

The daitem objects represent specific server items. Note that a client typically requires only a subset
of the entire name space of a server in order to operate effectively. In the figure above, only the PV
and SP items of FICO1, and the LITO1 item, are required for that particular group. Another group
may only contain a single daitem object, representing a single server item.

6-3

6 Using OPC Toolbox Data Access Objects

6-4

Note The dagroup object has no equivalent on the OPC server. However, the server keeps a record
of each group that a client has created, and uses that group name to communicate to the client
information about the items in that group.

Create Data Access Group Objects

Once you have created an opcda client object, you can add groups to the client. A dagroup object
manages multiple daitem objects. Using a dagroup object, you can read data from all items in that
group in one action, write data to the items in the group, define actions to take when any of the items
in that group change value, or log data for all the items in that group for analysis and processing.

To create a dagroup object, you use the addgroup function, specifying the opcda client object that
you want to add the group to, and an optional group name. See “Specify a Group Name” on page 6-
4 for rules on defining your own group name.

The example below creates an opcda client object, connects that object to the server, and adds two
groups to the client. The first group is automatically named by the server, and the second group is
given a specified name.

da = opcda('localhost', '"Matrikon.OPC.Simulation.1");
connect(da);

grpl = addgroup(da);

grp2 addgroup(da, 'MyGroup');

Specify a Group Name

Each group created under a specific client object must have a unique name. This allows the OPC
server to uniquely identify the group when a client makes a server request using that group. The
name can be any nonempty character vector.

You do not need to specify a group name for each group that you add to a client. If you do not specify
a name, the OPC server will automatically assign a group name for you. Each OPC server defines
different rules for automatic naming of groups.

If you attempt to create a group with the same name as a group already created for that client, an
error will be generated.

See “Delete Objects” on page 6-17 for information about how groups are automatically named when
you create groups with a disconnected client.

View a Summary of a Group Object

To view a summary of the characteristics of the dagroup object you created, enter the variable name
you assigned to the object at the command prompt. For example, this is the summary for the object

grpl.
grpl

Create OPC Toolbox Data Access Objects

@

@

grpl =
summary of OPC Data Access Group Object: Groupo
Object Parameters

Group Type ! private
Item i 0O-by-1 daitem object
Parent i localhost /Matrikon .OPC. Simulation.d
Update Rate . 0.5
Deadband T 0%
Object Status
Active Loon
Subscription @ on
Logoing v off
Logoing Parameters
Records 120
Duration i at least 80 seconds
Looging to Lomemory
status i Waiting for START.

0 records available for GETDATA/PEEKDATA

The items in this list correspond to the numbered elements in the object summary:

1

The title of the Summary includes the name of the dagroup object. In the example, this is the
server-assigned name Group0.

The Object Parameters section lists the values of key dagroup object properties. These
properties describe the type of group, the daitem objects associated with the group, the name of
the group's parent opcda client object, and properties that control how the server updates item
information for this group. In the example, any items created in this group will be updated at
half-second intervals, with a deadband of 0%. For information on how the server updates item
information, see “Data Change Events and Subscription” on page 7-9.

The Object Status section lists the current state of the object. A dagroup object can be in one
of several states:

* The Active state defines whether any operation on the group applies to the item.

* The Subscription state defines whether changes in the item's value or quality will produce
a data change event. See “Data Change Events and Subscription” on page 7-9 for more
information about the Subscription property.

* The Logging state describes whether the group is logging or not. See “Log OPC Server Data”
on page 7-12 for information on how to log data.

The Logging Parameters section describes the values of the logging properties for that group.
Logging properties control how the dagroup object logs data, including the duration of the
logging task and the destination of logged data. See “Log OPC Server Data” on page 7-12 for
information on logging data using dagroup objects.

Use a Group Object

A dagroup object with no items does not perform any useful functions. Once you have added items to
a group, you can use the group to

Read data from, and write data to, the OPC server. See “Read and Write Data” on page 7-2 for
more information.

Control how an OPC server notifies MATLAB about changes in any item associated with a
dagroup object. See “Data Change Events and Subscription” on page 7-9 for more information.

Log data from all items in that group, for later processing and analysis. “Log OPC Server Data” on
page 7-12 describes how to control logging.

6 Using OPC Toolbox Data Access Objects

6-6

Create Data Access Item Objects

A dagroup object provides a container for collecting one or more daitem objects. A daitem object
provides a link to a specific server item. The daitem object defines how you want to retrieve and
store the client-side value of the server item, and also stores the last data retrieved from the server
for that server item. You can use a daitem object to read data from the server for that server item, or
to write values to that server item on the server.

You create a daitem object using the additem function, specifying the dagroup object to which the
item must be added and the fully qualified item ID of the server item. You can obtain a list of the fully
qualified item IDs for all server items using the serveritems function.

The example below builds on the example in “Create Data Access Group Objects” on page 6-4 by
adding a daitem object to the first group created in that example. The server item associated with
this item is called 'Random.Real8"'.

itml = additem(grpl, 'Random.Real8');
Specify a Local Data Type for the Item

When you create a daitem object, you create an object that stores the value of the server item locally
on the client. You can specify that the local storage data type be different from the server storage
data type. For example, you can specify that a value stored on the server as an integer be stored in
MATLAB as a double-precision floating-point value, because you know that you will be performing
double-precision calculations with that item's value.

Although it is possible to modify the data type of the item after it is created, you can also create an
item with a specific data type by specifying the data type as the third parameter to the additem
function. The data type specification must be a character vector describing that data type. Valid OPC
data types are any MATLAB numeric data type, plus 'char', and 'logical'. See “Work with
Different Data Types” on page 8-13 for more information on supported data types.

The example below adds another item to the group grpl created by the example in “Create Data
Access Group Objects” on page 6-4. The item ID is 'Random.UInt2', which is stored on the server
as an unsigned 16-bit integer. By specifying the data type as 'double’, the value will be returned to
MATLAB and stored locally as a double-precision floating-point number.

itm2 = additem(grpl, 'Random.UInt2', 'double');

Note The conversion process from the server's data type to the item's data type is performed by the
server, using Microsoft COM Variant conversion rules. If you attempt to convert a value to a data type
that does not have that value's range, the OPC server will return an error when attempting to update
the value of that item. You should then change the data type to one that has the same or larger range
than the server item's data type. See “Work with Different Data Types” on page 8-13 for more
information.

Specify the Active Status of an Item Object

You can optionally specify the Active status of an daitem object by passing a character vector as
the fourth parameter to the additem function. The Active status can be 'on' or 'off'. An item
with an Active status of 'off' behaves as if the item was never created: No server updates of the
item's value will take place, and a read or write with that item will fail. You use the Active status to

Create OPC Toolbox Data Access Objects

temporarily disable an item without deleting that item from MATLAB. For more information on the
Active status, see the reference page for the Active property.

View a Summary of the Item Object

To view a summary of the characteristics of the daitem object you created, enter the variable name
you assigned to the object at the command prompt. For example, this is the summary for the object
itml.

itml

itml =
summary of OPC Data Access Item Object: Random.Reals
Object Parameters
Farent . Groupo
Access Rights @ read
{:} Object Status

Active Loon
{:) Data Parameters
Data Type : double
value ¥
Quality i Bad: out of Serwvice
Timestamp : OB-Mar-2004 10:32:23

The items in this list correspond to the numbered elements in the object summary:

1 The title of the Summary includes the fully qualified item ID of the item. In the example, the item
is associated with the 'Random.Real8"' server item.

2 The Object Parameters section lists the values of key daitem object properties. These
properties describe the name of the item's Parent group, and the Access Rights advertised
by the server.

3 The Object Status section lists the Active state of the object. The Active state defines
whether any operation on the parent group applies to the item, and whether you want to be
notified of any changes in the item's value.

4 The Data Parameters section lists the Data Type used by the daitem object to store the
value, and the Value, Quality, and TimeStamp of the last value obtained from the server for
this item. For more information on the Value, Quality, and TimeStamp of an item, see “OPC
Data: Value, Quality, and TimeStamp” on page 8-2.

Use an Item Object

You create a daitem object to query the value of the associated server item, or to write values to that
server item. You can write values to a single item, and read values from a single item, using the
daitem object. For more information on reading and writing values, see “Read and Write Data” on
page 7-2.

You can also use the parent dagroup object to read and write values for all of the daitem objects

contained in that group, or to log changes in the item's value for a period of time. See “Log OPC
Server Data” on page 7-12 for information on logging data.

Build an Object Hierarchy with a Disconnected Client

When you create objects with a connected client, OPC Toolbox software validates those objects with
the OPC server before creating them on the client. For example, when adding a group to the client

6-7

6 Using OPC Toolbox Data Access Objects

6-8

using the addgroup function, the validation process ensures that no other group with the same name
exists on the server, and that the server will accept the group. When adding an item, the item ID is
verified to be a valid server item.

Occasionally you might want to build up a toolbox object hierarchy without connecting to the server.
For example, you might be off site and want to configure a logging task for use on the following day,
rather than wait to configure the objects for that task when you are on site.

OPC Toolbox software allows you to configure an entire toolbox object hierarchy without connecting
to the server. However, without a connection to the server, the toolbox cannot validate the created
objects with that server. Instead, OPC Toolbox software performs some basic validation on the objects
you create, and revalidates those objects with the server when you connect.

When you create toolbox objects with a disconnected client, the following validation is performed:

* When adding a group using the addgroup function, if you do not specify a name, OPC Toolbox
software automatically assigns a unique name 'groupN', where N is the lowest integer that
ensures that the group name is unique. For example, the first group created will be 'groupl’,
then 'group2', and so on.

* When you specify a group name when using the addgroup function, an error is generated if a
group with the same name already exists.

* When adding an item to a group using the additem function, an error is generated only if an item
with the same name already exists in that group. No other checking is performed on the item.

* When adding an item to a group, if you do not specify a data type for that item, the data type is set
to 'unknown'. When you connect to the server, the data type will be changed to the server item's
CanonicalDataType.

Despite all of the checks described above, the server might not accept all objects created on a
disconnected client when that client is connected to the server using the connect function. For
example, an item's item ID might not be valid for that server, or a group name might not be valid for
that server. When you connect a client to the server using connect, any objects that the server
rejects will be deleted from the object hierarchy, and a warning will be generated. In this way, all
objects on a connected client are guaranteed to have been accepted by the server.

Create OPC Toolbox Data Access Object Vectors

OPC Toolbox software supports the use of object vectors. An object vector is a single variable in the
MATLAB workspace containing a reference to more than one object. For example, all the groups
added to an opcda client object are stored in the client's Group property. The Group property
contains a dagroup object vector that represents all groups in that client. Similarly, a dagroup
object has an Item property that contains a reference to every daitem object created in the group.

You can construct vectors using any of the standard concatenation techniques available in MATLAB.
However, OPC Toolbox software imposes some limitations on the construction of object vectors:

* Objects must be the same class. For example, you can concatenate two dagroup objects, but you
cannot concatenate a dagroup object with a daitem object.
* Group and item objects must have the same parent.

* One of the dimensions of the resulting array must be scalar. You can create a column vector (m-
by-1 objects) or a row vector (1-by-n objects), but not an m-by-n matrix.

* OPC Toolbox software does not fill in missing elements in a vector. Instead, an error is generated.
For example, you cannot assign a scalar object at the 4th index to a scalar object.

Create OPC Toolbox Data Access Objects

The following sections discuss how to create and use toolbox object vectors:

* “Construct Object Vectors” on page 6-9 describes how to create ohject vectors.

+ “Display a Summary of Object Vectors” on page 6-9 describes how object vectors are displayed
at the command line.

* “Use Object Vectors” on page 6-10 describes how you can use object vectors with OPC Toolbox
software.
Construct Object Vectors

You can construct an object vector using any of the following techniques:

* Using concatenation of lists of individual object variables
* Using indexed assignment
» Using object properties to retrieve object vectors

Create Object Vectors Using Concatenation

To construct an OPC Toolbox Data Access object vector using concatenation, you use the normal
MATLAB syntax for concatenation. Create a list of all objects you want to create, and surround that
list with square brackets ([]). Separate each element of the object vector by either a comma (,) to
create a row vector, or a semicolon (;) to create a column vector.

The following example creates three fictitious opcda client objects, and concatenates them into a row
vector.

dal = opcda('Hostl', 'Dummy.Server.1');
da2 = opcda('Host2', 'Dummy.Server.2');
da3 = opcda('Host3', 'Dummy.Server.3");
dav = [dal, da2, da3];

Create Object Vectors Using Indexed Assignment

Indexed assignment refers to creating vectors by assigning elements to specific indices in the vector.
The following example constructs the same three-element opcda client object vector as in the
previous example, using indexed assignment.

dav(l) = opcda('Hostl', 'Dummy.Server.1');
dav(2) = opcda('Host2', 'Dummy.Server.2');
dav(3) = opcda('Host3"', 'Dummy.Server.3');

Create an Object Vector Using Object Properties

You may obtain an object vector if you assign the Group property of a opcda client object, or the
Item property of a dagroup object, to a variable. If the client has more than one group, or the group
has more than one item, the resulting property is an object vector.

For information on obtaining object properties, see “View the Value of a Particular Property” on page
6-14.

Display a Summary of Object Vectors

To view a summary of an object vector, type the name of the object vector at the command prompt.
For example, this is the summary of the client vector dav.

dav

6-9

6 Using OPC Toolbox Data Access Objects

6-10

OPC Data Access Object Array:

Index: Status: Name:

1 disconnected Host1l/Dummy.Server.1
2 disconnected Host2/Dummy.Server.?2
3 disconnected Host3/Dummy.Server.3

The summary information for each OPC Toolbox Data Access object class is different. However, the
basic display is similar.

Use Object Vectors
You use object vectors just as you would a normal object variable. The function you call with the

object vector simply gets applied to all objects in the vector. For example, passing the client vector
dav to the connect function connects each object in the vector to its OPC server.

Note Some OPC Toolbox functions do not accept object vectors as arguments. If you attempt to use
an object vector with a function that does not accept object vectors, an error will be generated.
Consult the relevant function reference page for information on whether a function supports object
vectors.

If you need to extract elements of an object vector, use standard MATLAB indexing notation. For
example, the following example extracts the second element from the client vector dav.

dax = dav(2);

Work with Public Groups

The OPC Data Access Specification provides a mechanism for sharing group configuration amongst
many clients. Normally, a client has private access to a group; no other client connected to the same
server can see that group, and the items configured in that group. However, a client can define a
group as public, allowing other clients connected to the same server to gain access to that group.

Note The OPC Data Access Specification defines the support for public groups as optional.
Consequently, some OPC servers will not support public groups.

A public group differs from a private group in the following ways:

* Once a group is defined as public, you cannot add items to that group, nor remove items from the
group. This restriction ensures that every client using that public group has access to the same
items, and does not need to worry about items being added or removed from that group. You
should ensure that a group's items are correct before making that group public.

» Each client that accesses the public group is able to set its own group properties, such as the
UpdateRate, DeadbandPercent, Active, and Subscription properties. For example, one
client can define an UpdateRate of 10 seconds for a public group, while another client specifies
the UpdateRate as 2 seconds.

* Each public group defined on a server must have a unique name. If you attempt to create a public
group with a name that is the same as a public group on the server, an error is generated.

Create OPC Toolbox Data Access Objects

» Asingle client cannot have a public group and a private group with the same name. For example,
you cannot connect to a public group named 'LogGroup' and then create a private group called
"LogGroup".

Using OPC Toolbox software, you can define and publish your own public groups or connect to
existing public groups. You an also request that public groups be removed from an OPC server. The
following sections illustrate how you can work with public groups using OPC Toolbox software:

* “Define a New Public Group” on page 6-11 describes how you can create new public groups.

* “Connect to an Existing Public Group” on page 6-11 describes how you can utilise a public group
that is already defined on the server.

« “Remove Public Groups from the Server” on page 6-12 describes how you can remove public
groups from an OPC server.

Define a New Public Group

You define a new public group by creating a private group in the normal way (described in “Create
Data Access Group Objects” on page 6-4) and then converting that private group into a public group.

You use the makepublic function to convert a private group into a public group. The only argument
to the makepublic function is the group object that you want to convert to a public group.

The following example creates a private group, with specific items in that group. The group is then
converted into a public group.

da = opcda('localhost', 'My.Server.1");

grp = addgroup(da, 'PublicGrpExample');

itms = additem(grp,{'Item.ID.1','Item.ID.2'});
makepublic(grp);

You can check the group type using the GroupType property.
grp.GroupType

public

Connect to an Existing Public Group

In addition to creating new public groups, you can also create a connection to an existing public
group on the server. To obtain a list of available public groups on a server, you use the
opcserverinfo function, passing the client object that is connected to the server as the argument.
The returned structure includes a field called 'PublicGroups', containing a cell array of public
groups defined on that server. If the 'PublicGroups' field is empty, then you should check the
'SupportedInterfaces' field to ensure that the server supports public groups. A server that
supports public groups will implement the IOPCServerPublicGroups interface.

Once you have a list of available public groups, you can create a connection to that group using the
addgroup function, passing it the client that is connected to the server containing the public group,
the name of the public group, and the 'public' group type specifier.

Note You cannot create a connection to an existing public group if your client object is disconnected
from the server.

6-11

6 Using OPC Toolbox Data Access Objects

6-12

The following example connects to a public group named 'PublicTrends' on the server with
program ID 'My.Server.1".

da = opcda('localhost', 'My.Server.1');
connect(da);
pubGrp = addgroup(da, 'PublicTrends', 'public');

When you connect to a public group, the items in that group are automatically created for you.

itm pubGrp.Items
itm =
OPC Item Object Array:

Index: DataType: Active: ItemID:

1 double on item.id.1
2 uintl6 on item.id.2
3 double on item.id.3

You cannot add items to or remove items from a public group. However, you can still modify the
update rate of the group, the dead band percent, and the active and subscription status of the group,
and you can use the group to read, write, or log data as you would for a private group.

When you have finished using a public group, you can use the delete function to remove that group
from your client object. Deleting the group from the client does not remove the public group from the
server; other clients might require that group after you have finished with it. Instead, deleting the
group from the client indicates to the server that you are no longer interested in the group.

Remove Public Groups from the Server

You can request that a public group be removed from a server using the removepublicgroup
function, passing the client object that is connected to the server and the name of the public group to
remove.

Caution The OPC Data Access Specification does not provide any security mechanism for removing
public groups; any client can request that a public group be removed. You should use this function
with extreme caution!

If any clients are currently connected to that group, the server will issue a warning stating that the
group will be removed when all clients have finished using the group.

Configure OPC Toolbox Data Access Object Properties

Configure OPC Toolbox Data Access Object Properties

In this section...

“Purpose of Object Properties” on page 6-13

“View the Values of Object Properties” on page 6-13

“View the Value of a Particular Property” on page 6-14
“Get Information About Object Properties” on page 6-15
“Set the Value of an Object Property” on page 6-15

“View a List of All Settable Object Properties” on page 6-16

Purpose of Object Properties

All OPC Toolbox Data Access objects support properties that enable you to control characteristics of
the object:

* The opcda client object properties control aspects of the connection to the OPC server, and event
information obtained from the server. For example, you can use the Timeout property to define
how long to wait for the server to respond to a request from the client.

» The dagroup object properties control aspects of the collection of items contained within that
group, including all logging properties. For example, the UpdateRate property defines how often
the items in the group must be checked for value changes, as well as the rate at which data will be
sent from the server during a logging session.

* The daitem object properties control aspects of a single server item. For example, you use the
DataType property to define the data type that the server must use to send values of that server
item to the OPC Toolbox software.

For all three toolbox objects, you can use the same toolbox functions to

* View a list of all the properties supported by the object, with their current values
* View the value of a particular property

* Get information about a property

* Set the value of a property

View the Values of Object Properties

To view all the properties of an OPC Toolbox Data Access object, with their current values, use the
get function.

If you do not specify a return value, the get function displays the object properties in categories that
group similar properties together. Use the display form of the get function to view the value of all
properties for the toolbox object.

This example uses the get function to display a list of all the properties of the OPC dagroup object
grp.

get(grp)

General Settings:
DeadbandPercent = 0

6-13

6 Using OPC Toolbox Data Access Objects

GroupType = private
Item = []

Name = groupl
Parent = [1x1 opcda]
Tag =

TimeBias = 0

Type = dagroup
UpdateRate = 0.5000
UserData = []

Callback Function Settings:
CancelAsyncFcn = @opccallback
DataChangeFcn = []
ReadAsyncFcn = @opccallback
RecordsAcquiredFcn = []
RecordsAcquiredFcnCount = 20
StartFcn = []

StopFcn = []
WriteAsyncFcn = @opccallback

Subscription and Logging Settings:
Active = on
LogFileName = opcdatalog.olf
Logging = off
LoggingMode = memory
LogToDiskMode = index
RecordsAcquired = 0
RecordsAvailable
RecordsToAcquire
Subscription = on

0
120

View the Value of a Particular Property

To view the value of a particular property of an OPC Toolbox Data Access object, use the get
function, specifying the name of the property as an argument. You can also access the value of the
property as you would a field in a MATLAB structure.

This example uses the get function to retrieve the value of the Subscription property for the
dagroup object.

get(grp, 'Subscription')
ans =
on

This example illustrates how to access the same property by referencing the object as if it were a
MATLAB structure.

grp.Subscription
ans =

on

6-14

Configure OPC Toolbox Data Access Object Properties

Get Information About Object Properties
To get information about a particular property, use thepropinfo or opchelp function.

The propinfo function returns a structure that contains information about the property, such as its
data type, default value, and a list of all possible values if the property supports such a list. This
example uses propinfo to get information about the LoggingMode property.

propinfo(grp, 'LoggingMode")
ans =
Type: 'string'
Constraint: 'enum'
ConstraintValue: {'memory' ‘'disk' ‘'disk&memory'}

DefaultValue: 'memory'’
ReadOnly: 'whilelogging'

The opchelp function returns reference information about the property with a complete description.
This example uses opchelp to get information about the LoggingMode property.

opchelp(grp, 'LoggingMode")

Set the Value of an Object Property

To set the value of a particular property of an OPC Toolbox Data Access object, use the set function,
specifying the name of the property as an argument. You can also assign the value to the property as
you would a field in a MATLAB structure.

Note Because some properties are read-only, only a subset of the toolbox object properties can be
set. Use the property reference pages or the propinfo function to determine if a property is read-
only.

This example uses the set function to set the value of the LoggingMode property.
set(grp, 'LoggingMode', 'disk&memory"')

To verify the new value of the property, use the get function.

get(grp, 'LoggingMode")

ans =

disk&memory

This example sets and views the value of a property by using dot-notation.

grp.LoggingMode = 'disk';
grp.LoggingMode

ans =

disk

6-15

6 Using OPC Toolbox Data Access Objects

6-16

View a List of All Settable Object Properties

To view a list of all the properties of a toolbox object that can be set, use the set function.

set(grp)

General Settings:
DeadbandPercent
Name
Tag
TimeBias
UpdateRate
UserData

Callback Function Settings:
CancelAsyncFcn: character vector -or- function handle -or- cell array
DataChangeFcn: character vector -or- function handle -or- cell array
ReadAsyncFcn: character vector -or- function handle -or- cell array
RecordsAcquiredFcn: character vector -or- function handle -or- cell array
RecordsAcquiredFcnCount
StartFcn: character vector -or- function handle -or- cell array
StopFcn: character vector -or- function handle -or- cell array
WriteAsyncFcn: character vector -or- function handle -or- cell array

Subscription and Logging Settings:

Active: [{on} | off]

LogFileName

LoggingMode: [{memory} | disk | disk&memory]
LogToDiskMode: [{index} | append | overwrite
RecordsToAcquire

Subscription: [{on} | off]

When using the set function to display a list of settable properties, all properties that have a
predefined set of acceptable values list those values after the property. The default value is enclosed
in curly braces ({}). For example, from the display shown above, you can set the Subscription
property for a dagroup object to 'on' or 'off', with the default value being 'on'. You can set the
LogFileName property to any value.

Special Read-Only Modes

Some OPC Toolbox Data Access object properties change their read-only status, depending on the
state of an object (defined by another property of that object, or the parent of that object). The
toolbox uses two special read-only modes:

* 'whileConnected': These properties cannot be changed while the client is connected to the
OPC server. For example, the client's Host property is read-only while connected.

* 'whilelLogging': These properties cannot be changed while the dagroup object is logging. For
example, the LoggingMode property is read-only while logging. For more information on logging,
see “Log OPC Server Data” on page 7-12.

* 'whilePublic': These properties cannot be changed because the group is a public group. For
more information on public groups, see “Work with Public Groups” on page 6-10.

Note Properties that modify their read-only state are always displayed when using set to display
settable properties, even when they cannot be changed because of the state of the object.

To determine if a property has a modifiable read-only state, use the propinfo function.

Delete Objects

Delete Objects

When you finish using your OPC Toolbox Data Access objects, use the delete function to remove
them from memory. After deleting them, clear the variables that reference the objects from the
MATLAB workspace by using the clear function.

Note When you delete an opcda client object, all the group and item objects associated with the
opcda client object are also deleted. Similarly, when you delete a dagroup object, all daitem objects
associated with that dagroup object are deleted.

To illustrate the deletion process, this example creates several opcda client objects and then deletes
them.

Step 1: Create several clients

This example creates several opcda client objects using fictitious host and server ID properties.

dal = opcda('Hostl', 'Dummy.Server.1");
da2 = opcda('Host2', 'Dummy.Server.2');
da3 = opcda('Host3', 'Dummy.Server.3");

Step 2: Delete clients

Always remove toolbox objects from memory, and the variables that reference them, when you no
longer need them.

You can delete toolbox objects using the delete function.
delete(dal)

delete(da2)
delete(da3)

Note that the variables associated with the objects remain in the workspace.

whos
Name Size Bytes (lass
dal 1x1 636 opcda object
da2 1x1 636 opcda object
da3 1x1 636 opcda object

These variables are not valid OPC Toolbox Data Access objects.
isvalid(dal)

ans =
0

To remove these variables from the workspace, use the clear command.

Note You can delete toolbox object vectors using the delete function. You can also delete individual
elements of a toolbox object vector.

6-17

6 Using OPC Toolbox Data Access Objects

Save and Load Objects

6-18

Using the save command, you can save an OPC Toolbox Data Access object to a MAT-file, just as you
would any workspace variable. This example saves the dagroup object grp to the MAT-file
myopc.mat.

save myopc grp

When you save a toolbox object, all the toolbox objects in that object hierarchy are also saved. For
example, if you save a dagroup object, the client, all groups associated with that client and all items
created in those groups are saved along with the dagroup object. However, only those objects you
elect to save will be created in the MATLAB workspace. Other objects will be created with no
reference to them in the workspace. To obtain a reference to an existing OPC Toolbox Data Access
object, use the opcfind function.

To load a toolbox object that was saved to a MAT-file into the MATLAB workspace, use the lLoad
command. For example, to load grp from MAT-file myopc.mat, use

load myopc

Note The values of read-only properties are not saved. When you load a toolbox object into the
MATLAB workspace, read-only properties revert back to their default values. To determine if a
property is read-only, use the propinfo function.

Reading, Writing, and Logging OPC Data

The core of any OPC Toolbox software application is the exchange of data between the MATLAB
workspace and one or more OPC servers. You create and configure toolbox objects to support the
reading, writing, and data logging functions that you require for your application.

Using OPC Toolbox software you can exchange data with an OPC server in a number of ways. You can
read and write data from the MATLAB command line or other MATLAB functions. You can configure
toolbox objects to automatically run MATLAB code when the server notifies the objects that data has

changed on the server. You can also log changes in OPC server data to a disk file or to memory, for
further analysis.

This chapter provides information on how to exchange data with an OPC server.

* “Read and Write Data” on page 7-2
+ “Data Change Events and Subscription” on page 7-9
* “Log OPC Server Data” on page 7-12

7 Reading, Writing, and Logging OPC Data

Read and Write Data

7-2

In this section...

“Introduction to Reading and Writing” on page 7-2
“Read Data from an Item” on page 7-2

“Write Data to an Item” on page 7-4

“Read and Write Multiple Values” on page 7-6

Introduction to Reading and Writing

Using OPC Toolbox software, you can exchange data with the OPC server using individual items, or
using the dagroup object to perform the operation on multiple items. The reading and writing
operation can be performed synchronously, so that your MATLAB session will wait for the operation
to complete, or asynchronously, allowing your MATLAB session to continue processing while the
operation takes place in the background.

Read Data from an Item

You can read data from any item that is associated with a connected client. When you perform the
read operation on an item, the server will return information about the server item associated with
that item ID. The read operation can be performed synchronously or asynchronously:

* “Use Synchronous Read Operations” on page 7-2 describes how to perform synchronous read
operations. Synchronous read operations can request data from the server's cache, or directly
from the device.

* “Use Asynchronous Read Operations” on page 7-4 describes how to perform asynchronous read
operations.

Use Synchronous Read Operations

A synchronous read operation means that MATLAB will wait for the server to return data from a read
request before continuing processing. The data returned by the server can come from the server's
cache, or you can request that the server read values from the device that the server item refers to.

You use the read function to perform synchronous read operations, passing the daitem object
associated with the server item you want to read. If the read operation is successful, the data is
returned in a structure containing information about the read operation, including the value of the
server item, the quality of that value, and the time that the server obtained that value. The item's
Value, Quality and Timestamp properties are also updated to reflect the values obtained from the
read operation.

The following example creates an opcda client object and configures a group with one item,
'Random.Real8"'. A synchronous read operation is then performed on the item.

da = opcda('localhost', '"Matrikon.OPC.Simulation.1");
connect(da);

grp = addgroup(da);

itml = additem(grp, 'Random.Real8");

r = read(itml)

r =

Read and Write Data

ItemID: 'Random.Real8'’
Value: 4.3252e+003
Quality: 'Good: Non-specific'
TimeStamp: [2004 3 2 9 50 26.6710]
Error: '

Specify the Source of the Read Operation

By default, a synchronous read operation will return data from the OPC server's cache. By reading
from the cache, you do not have to wait for a possibly slow device to provide data to the server. You
can specify the source of the synchronous read operation as the second parameter to the read
function. If the source is specified as 'device’, the server will read a value from the device, and
return that value to you (as well as updating the server cache with that value).

Note Reading from the device may be slow. If the read operation generates a time-out error, you may
need to increase the value of the Timeout property of the opcda client object associated with the
group or item in order to support synchronous reads from the device.

The following example reads data from the device associated with itml.

r

read(itml, 'device')

r =

ItemID: 'Random.Real8'
Value: 9.1297e+003
Quality: 'Good: Non-specific'
TimeStamp: [2004 3 2 10 8 20.2650]
Error: '

Read from the Cache with Inactive Iltems

In order to reduce communication traffic and speed up data access, OPC servers do not store all
server item values in their cache. Only those server items that are active will be stored in the server
cache. Therefore, synchronous read operations from the cache on an inactive item will return data
that may not correspond to the current device value. If you attempt to read data from an inactive item
using the read function, and do not specify 'device’ as the source, the Quality will be set to
'Bad: Out of Service'.

You control the active status of an item using the Active property.

The following example sets the Active property of the item to 'off' and attempts to read from the
cache.

itml.Active = 'off';
r = read(itml)

Warning: One or more items is inactive.
(Type "warning off opc:read:iteminactive" to suppress this
warning.)

r =
ItemID: 'Random.Real8'

Value: 8.4278e+003
Quality: 'Bad: Out of Service'

7 Reading, Writing, and Logging OPC Data

TimeStamp: [2004 3 2 10 17 19.9370]
Error: "'

Use Asynchronous Read Operations

An asynchronous read operation creates a request to read data, and then sends that request to the
server. Once the request has been accepted, MATLAB continues processing the next instruction
without waiting to receive any values from the server. When the data is ready to be returned, the
server sends the data back to MATLAB by generating a read async event. MATLAB will handle that
event as soon as it is able to perform that task.

Asynchronous read operations always return data from the device.

By using an asynchronous read operation, you can continue performing tasks in MATLAB while the
value is being read from the device, and then process the returned value when the server is able to
provide it back to MATLAB.

You perform asynchronous read operations using the readasync function, passing the daitem object
that you want to read from. If successful, the function will return a transaction ID, a unique identifier
for that asynchronous transaction. You can use that transaction ID to identify the read operation
when it is returned through the read async event.

When an asynchronous read operation is processed in MATLAB, the item's Value, Quality and
Timestamp properties are also updated to reflect the values obtained from the asynchronous read
operation.

The following example of using an asynchronous read operation uses the default callback for a read
async event. The default callback is set to the opccallback function, which displays information
about the event in the command line.

tid = readasync(itml)
tid =
3

The transaction ID for this operation is 3. A little while later, the default callback function displays the
following information at the command line.

OPC ReadAsync event occurred at local time 10:44:49
Transaction ID: 3
Group Name: GroupO
1 items read.

You can change the read async event callback function by setting the ReadAsyncFcn property of the
dagroup object.

Write Data to an Item

You can write data to individual items, or to groups of items. This section describes how to write data
to individual items. See “Read and Write Multiple Values” on page 7-6 for information on using
dagroup objects to write data to multiple items.

You can write data to an OPC server using a synchronous write operation, in which case MATLAB will
wait for the server to acknowledge that the write operation succeeds, or using an asynchronous write

Read and Write Data

operation, in which case MATLAB is free to continue performing other tasks while the write operation
takes place. Because write operations always apply directly to the device, a synchronous write
operation may take a significant amount of time, particularly if the device that you are writing to has
a slow connection to the OPC server.

Use Synchronous Write Operations

You use the write function to perform synchronous write operations. The first argument is the
daitem object that represents the server item you want to write to. The second argument is the value
that you want to write to that server item. The write function does not return any results, but will
generate an error if the write operation is not successful.

The following example creates an item with item ID 'Bucket Brigade.Real8' and writes the value
10. 34 to the item. The value is then read using a synchronous read operation.

itm2 = additem(grp, 'Bucket Brigade.Real8');
write(itm2, 10.34)
r = read(itm2, 'device')

You do not need to ensure that the data type of the value you are writing, and the data type of the
daitem object, are the same. OPC Toolbox software relies on the server to perform the conversion
from the data type you provide, to the data type required for that server item. For information on how
the toolbox handles different data types, see “Work with Different Data Types” on page 8-13.

Use Asynchronous Write Operations

An asynchronous write operation creates a request to write data, and then sends that request to the
server. Once the request has been accepted, MATLAB continues processing the next instruction
without waiting for the data to be written. When the write operation completes on the server, the
server notifies MATLAB that the operation completed by generating a write async event containing
information on whether the write operation succeeded, and an error message if applicable. MATLAB
will handle that event as soon as it is able to perform that task.

You use the writeasync function to write values to the server asynchronously. The first argument is
the daitem object that represents the server item you want to write to. The second argument is the
value you want to write to that server item. The return value is the transaction ID of the operation.
You can use the transaction ID to identify the write operation when it is returned through the write
async event.

The following example uses asynchronous operations to write the value 57.8 to the item 'Bucket
Brigade.Real8' created earlier.

tid = writeasync(itm2, 57.8)
tid =
4

A while later, the standard callback (opccallback) will display the results of the write operation to
the command line.

OPC WriteAsync event occurred at local time 11:15:27
Transaction ID: 4
Group Name: GroupO
1 items written.

7-5

7 Reading, Writing, and Logging OPC Data

You can change the write async event callback function by setting the WriteAsyncFcn property of
the dagroup object.

Read and Write Multiple Values

When you use the read and write operation on a single daitem object, you read or write a single
value per transaction. OPC Toolbox software allows you to perform one operation to read multiple
item values, or to write multiple values. You can also use a dagroup object to read and write values
using all items in the group, or you can perform read and write operations on item object vectors.

A daitem object vector is a single variable in the MATLAB workspace containing more than one
daitem object. You can construct item vectors using any of the standard concatenation techniques
available in MATLAB. See “Create OPC Toolbox Data Access Object Vectors” on page 6-8 for
information on creating and working with toolbox object vectors.

When you perform any read or write operation on a dagroup object, it is the equivalent of
performing the operation on the Item property of that group, which is a daitem object vector
representing all items that are contained within the dagroup object.

The following sections describe how to perform read and write operations on multiple items:
* “Read Multiple Values” on page 7-6 describes how to read multiple values from an item vector

or dagroup object.

* “Write Multiple Values” on page 7-7 describes how to write multiple values to an item vector or
dagroup object.

* “Error Handling for Multiple Item Read and Write Operations” on page 7-7 explains how OPC
Toolbox software deals with errors when performing read and write operations on multiple
objects.

Read Multiple Values

The following sections describe how synchronous read operations and asynchronous read operations
behave for multiple items.

Synchronous Read Operations
When you read multiple values using the read function, the returned value will be a structure array.

Each element of the structure will contain the same fields. One of the fields is the item ID that the
information in that element of the structure refers to.

The following example performs a synchronous read operation on the dagroup object created in the
previous examples in this section.

_1
1l

read(grp)

2x1 struct array with fields:
ItemID
Value
Quality
TimeStamp
Error

To display the first record in the structure array, use indexing into the structure.

Read and Write Data

r(1)
ans =

ItemID: 'Random.Real8'’
Value: 3.7068e+003
Quality: 'Good: Non-specific'
TimeStamp: [2004 3 2 11 49 52.5460]
Error: '

To display all values of a particular field, you can use the list generation syntax in MATLAB. Enclosing
that list in a cell array groups the values into one variable.

{r.vValue}
ans =
{3.7068e+003 10}

Asynchronous Read Operations

When you read multiple values using the readasync function, the return value is still a single
transaction ID. The multiple values will be returned in the read async event structure passed to the
ReadAsyncFcn callback. For information on the structure of the read async event, see “Event Types”
on page 9-4.

Write Multiple Values

When you perform a write operation on multiple items you need to specify multiple values, one for
each item you are writing to. OPC Toolbox software requires these multiple values to be in a cell
array, since the data types for each value may be different. For information on constructing cell
arrays, see MATLAB Programming.

Note Even if you are using the same data type for every value being written to the dagroup object
or daitem object vector, you must still use a cell array to specify the individual values. Use the
num2cell function to convert numeric arrays to cell arrays.

The following example writes values to a dagroup object containing two items.

write(grp, {1.234, 5.43})
Error Handling for Multiple Item Read and Write Operations

When reading and writing with multiple items, an error generated by performing the operation on
one item will not automatically generate an error in MATLAB. The following rules apply to reading
and writing with multiple items:

« [If all items fail the operation, an error will be generated. The error message will contain specific
information for each item about why the item failed.

+ If some items fail but some succeed, the operation does not error, but generates a warning, listing
which items failed and the reason for failure.

7-7

7 Reading, Writing, and Logging OPC Data

Note that for asynchronous read and write operations, items may fail early (during the request for the
operation) or late (when the information is returned from the server). If any items fail late, an error
event will be generated in addition to the read async event or write async event.

Data Change Events and Subscription

Data Change Events and Subscription

In this section...

“Introduction to Data Change Events” on page 7-9

“Configure OPC Toolbox Objects for Data Change Events” on page 7-9
“How OPC Toolbox Software Processes Data Change Events” on page 7-10
“Customize the Data Change Event Response” on page 7-11

Introduction to Data Change Events

Using the read and readasync functions described in “Read Data from an Item” on page 7-2, you
can obtain information about OPC server item values upon request. The OPC Data Access
specification provides another mechanism for clients to get information on server item values. This
mechanism allows the OPC server to notify a client when a server item value or quality has updated.
This mechanism is called a data change event. OPC Toolbox software supports data change event
notification by executing a MATLAB function when a data change event is received from a connected
OPC server. This section describes how to use the data change event notification.

Configure OPC Toolbox Objects for Data Change Events

A data change event occurs at the dagroup object level. Using dagroup object properties, you can
control whether a data change event is generated for a particular group, the minimum time between
successive events, and the MATLAB function to run when the event notification is received and
processed by OPC Toolbox software. You can also control which items in a particular group should be
monitored for data changes. In this way, you can control the number and frequency of data change
events that MATLAB has to process. On a busy OPC server, you can also turn off data change
notification for groups that you are not currently interested in.

The following sections describe how to control data change notification.

* “Control Data Change Notification for a Group” on page 7-9 describes how to turn off data
change notification for a dagroup object.

* “Temporarily Disable Items in a Group” on page 7-10 describes how to control which items in a
group must be monitored for data changes.

* “Customize the Data Change Event Response” on page 7-11 provided information on how to
configure the MATLAB function to run when a data change event occurs.

Control Data Change Notification for a Group

The following properties of a dagroup object control whether a server notifies the group of data
changes on items in that group:

* UpdateRate: The UpdateRate property defines the rate at which an OPC server must monitor
server item values and generate data change events. Even if a server item's value changes more
frequently than the update rate, the OPC server will only generate a data change at the interval
specified by the update rate.

* Subscription: The Subscription property defines whether the OPC server will generate a data
change event for the group. When you create a dagroup object, the Subscription property is
set to 'on'. When you set the Subscription property to 'off"', you tell the OPC server not to
generate data change events for that group.

7 Reading, Writing, and Logging OPC Data

7-10

» Active: The Active property must be 'on' for data change events to be generated. When you
create a dagroup object, the Active property is set to 'on'. When you set the Active property
to 'off', you remove any ability to read data from the group, whether through read operations or
data change events.

A summary of group read, write, and data change behavior for the Active and Subscription properties
is given in the following table.

Active Subscription Read Write Data Change
‘on' ‘on' Yes Yes Yes
‘on' 'of ! Yes Yes No
‘off' ‘on' No No No
‘of f' ‘of f' No No No

Temporarily Disable Items in a Group

You can temporarily disable items in a group without deleting the item from the group. When you
disable a daitem object, the OPC server no longer monitors changes in the associated server item's
value, and will therefore not generate data change events when the value of that server item
changes.

You can disable a daitem object by setting that object's Active property to 'off'. You can reenable
the daitem object by setting the Active property to 'on".

Force a Data Change Event

You can force an OPC server to generate a data change event for all active items in a group by using
the refresh function with the dagroup object as the first argument. The OPC server will generate a
data change event containing information for every active item in the group.

You can pass an optional second argument to the refresh function to instruct the OPC server where
to source the data values that are sent back in the data change event. By specifying a source of
"device’, you instruct the OPC server to update the values from the device. By specifying a source
of 'cache' (the default) you instruct the OPC server to return values from the OPC server's cache.

How OPC Toolbox Software Processes Data Change Events

OPC Toolbox software uses data change events for a number of tasks. The following activities take
place when a data change event occurs:

1 The Value, Quality, and TimeStamp properties of the daitem object are automatically updated.
For more information on these properties, see “OPC Data: Value, Quality, and TimeStamp” on
page 8-2.

2 Ifthe dagroup object is logging, the data change event is logged to memory and/or disk as a
record. For information on logging, see “Log OPC Server Data” on page 7-12.

3 Ifthe dagroup object's DataChangeFcn property is not empty, that function is called with the
data change event information. By default, this property is empty, since data change events occur
frequently. You can customize the behavior of the toolbox by setting this property to call a
function that you choose. For information on the data change event, see the reference page for
the DataChangeFcn property.

Data Change Events and Subscription

Note If you disable data change events by setting the Subscription property to 'off"' or the
Active property to 'off ', none of the activities listed above can take place. You cannot change
the Active or Subscription properties while a dagroup object is logging, otherwise the
logging task may never complete.

Customize the Data Change Event Response

One of the activities that occurs when OPC Toolbox software receives a data change event from the
OPC server is the running of the function defined in the DataChangeFcn property. By setting this
property to a the name of a function that you have written, you can fully customize the data change
event behavior of the toolbox. For example, you may configure a dagroup object to monitor a server
item that is updated from an operator interface. By pushing a button on the operator interface, the
server item value will change, initiating a data change event on that group. By configuring the
DataChangeFcn property to run a MATLAB function that performs control loop optimization, you can
allow an operator to initiate a control loop performance test on all critical control loops in the plant.

7-11

7 Reading, Writing, and Logging OPC Data

Log OPC Server Data

7-12

In this section...

“How OPC Toolbox Software Logs Data” on page 7-12
“Configure a Logging Session” on page 7-14

“Execute a Logging Task” on page 7-16

“Get Logged Data into the MATLAB Workspace” on page 7-17

How OPC Toolbox Software Logs Data

The OPC Data Access Specification, which OPC Toolbox software implements, provides access to
current values of data on an OPC server. Often, for analysis, troubleshooting, and prototyping
purposes, you will want to know how OPC server data has changed over a period of time. For
example, you can use time series data to perform control loop optimization or system identification on
a portion of your plant. OPC Toolbox software provides a logging mechanism that stores a history of
data that changed over a period of time. This section discusses how to configure and execute a
logging task using the toolbox.

Note The OPC Toolbox software logging mechanism is not designed to replace a data historian or
database application that logs data for an extended period. Rather, the logging mechanism allows you
to quickly configure a task to log data on an occasional basis, where modifications to the plant-wide
data historian may be unfeasible.

OPC Toolbox software uses the data change event to log data. Each data change event that is logged
is called a record. The record contains information about the time the client logged the record, and
details about each item in the data change event. Data change events are discussed in detail in “Data
Change Events and Subscription” on page 7-9.

The use of a data change event for logging means that you should consider the following points when
planning a logging session:

* Logging takes place at the group level — When planning a logging task, configure the group
with only the items you need to log. Including more items than you need to will only increase
memory and/or disk usage, and using that data may be more difficult due to unnecessary items in
the data set.

* Inactive items in a group will not be logged — You must ensure that the items you need to log
are active when you start a logging session. You control the active state of a daitem object using
the Active property of the daitem object.

* Data change events (records) may not include all items — A data change event contains only
the items in the group that have changed their value and/or quality state since the last update.
Hence, a record is not guaranteed to contain every data item. You need to consider this when
planning your logging session.

* OPC logging tasks are not guaranteed to complete — Because data change events only
happen when an item in the group changes state on the server, it is possible to start a logging task
that will never finish. For example, if the items in a group never change, a data change event will
never be generated for that group. Hence, no records will be logged.

* Logged data is not guaranteed to be regularly sampled — It is possible to force a data
change event at any time (see “Force a Data Change Event” on page 7-10). If you do this during a

Log OPC Server Data

logging task, the data change events may occur at irregular sample times. Also, a data change
event may not contain information for every item in the group. Consequently, logged OPC server
data may not occur at regular sample times.

An overview of the logging task, and a representation of how the above points impact the logging
session, is provided in the following section.

Overview of a Logging Task

To illustrate a typical logging task, the following example logs to disk and memory six records of data
from two items provided by the Matrikon OPC Simulation Server. During the logging task, data is
retrieved from memory. When the task stops, the remaining records are retrieved.

Step 1: Create the OPC Toolbox object hierarchy

This example creates a hierarchy of OPC Toolbox objects for two items provided by the Matrikon
Simulation Server. To run this example on your system, you must have the Matrikon Simulation
Server installed. Alternatively, you can replace the values used in the creation of the objects with
values for a server you can access.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1");
connect(da);

grp = addgroup(da, 'CallbackTest');

itml additem(grp, 'Triangle Waves.Real8');

itm2 additem(grp, 'Saw-Toothed Waves.Boolean');

Step 2: Configure the logging duration

This example sets the UpdateRate value to 1 second, and the RecordsToAcquire property to 6.
See “Control the Duration of a Logging Session” on page 7-14 for more information on this step.

grp.UpdateRate = 1;
grp.RecordsToAcquire = 6;

Step 3: Configure the logging destination

In this example, data is logged to disk and memory. The disk filename is set to
LoggingExample.olf. The LogToDiskMode property is set to 'overwrite', so that if the filename
exists, the toolbox engine must overwrite the file. See “Control the Logged Data Destination” on page
7-15 for more information on this step.

grp.LoggingMode "disk&memory’;
grp.LogFileName 'LoggingExample.olf';
grp.LogToDiskMode = 'overwrite';

Step 4: Start the logging task

Start the dagroup object. The logging task is started, and the group summary updates to reflect the
logging status. See “Start a Logging Task” on page 7-16 for more information on this step.

start(grp)
grp

Step 5: Monitor the Logging Progress

After about 3 seconds, retrieve and show the last acquired value. After another second, obtain the
first two records during the logging task. Then wait for the logging task to complete. See “Monitor
the Progress of a Logging Task” on page 7-16 for more information on this step.

7-13

7 Reading, Writing, and Logging OPC Data

7-14

pause(3.5)

sPeek = peekdata(grp, 1);

% Display the local event time, item IDs and values
disp(sPeek.LocalEventTime)
disp({sPeek.Items.ItemID;sPeek.Items.Value})
pause(1)

sGet = getdata(grp, 2);

wait(grp)

Step 6: Retrieve the data

This example retrieves the balance of the records into a structure array. See “Retrieve Data from
Memory” on page 7-18 for more information on this step.

sFinished = getdata(grp,grp.RecordsAvailable);

Step 7: Clean up

When you no longer need them, always remove from memory any toolbox objects and the variables
that reference them. Deleting the opcda client object also deletes the group and daitem objects.

disconnect(da)
delete(da)
clear da grp itml itm2

Configure a Logging Session

A logging session is associated with a dagroup object. Before you start a logging session, you will
need to ensure that the logging session is correctly configured. This section explains how you can
control

* The duration of a logging session (see “Control the Duration of a Logging Session” on page 7-14).
By default, a group will log approximately one minute of data at half second intervals.

* The destination of logged data (see “Control the Logged Data Destination” on page 7-15). By
default, a group will log data to memory.

* The response to events that take place during a logging session (see “Configure Logging
Callbacks” on page 7-16). By default, a logging session takes no action in response to events that
take place during a logging session.

Control the Duration of a Logging Session

While you cannot guarantee that a logging session will take a specific amount of time (see “How OPC
Toolbox Software Logs Data” on page 7-12), you can control the rate at which the server will update
the items and how many records the logging task should store before automatically stopping the
logging task. You control these aspects of a logging task by using the following properties of the
dagroup object:

* UpdateRate: The UpdateRate property defines how often the item values are inspected.

* RecordsToAcquire: The RecordsToAcquire property defines how many records OPC Toolbox
software must log before automatically stopping a logging session. A logging task can also be
stopped manually, using the stop function.

* DeadbandPercent: The DeadbandPercent property does not control the duration of a logging
task directly, but has a significant influence over how often a data change event is generated for
analog items (an item whose value is not confined to discrete values). By setting the

Log OPC Server Data

DeadbandPercent property to 0, you can ensure that a data change event occurs each time a
value changes. For more information on DeadbandPercent, consult the property reference page.

You can use the UpdateRate and RecordsToAcquire properties to define the minimum duration of
a logging task. The duration of a logging task is at least

UpdateRate * RecordsToAcquire

For example, if the UpdateRate property is 10 (seconds) and the RecordsToAcquire property is
360, then provided that a data change event is generated each time the server queries the item
values, the logging task will take 3600 seconds, or one hour, to complete.

Control the Logged Data Destination

OPC Toolbox software allows you to log data to memory, to a disk file, or both memory and a disk file.
When logging data to memory, you can log only as much data as will fit into available memory. Also, if
you delete the dagroup object that logged the data without extracting that data to the MATLAB
workspace, the data will be lost. The advantage of logging data to memory is that logging to memory
is faster than using a disk file.

Logging data to a disk file usually means that you can log more data, and the data is not lost if you
quit MATLAB or delete the dagroup object that logged the data. However, reading data from a disk
file is slower than reading data from memory.

The LoggingMode property of a dagroup object controls where logged data is stored. You can specify
'memory' (the default value), or 'disk"', or 'disk&memory' as the value for LoggingMode.

The following properties control how OPC Toolbox software logs data to disk. You must set the
LoggingMode property to 'disk' or 'disk&memory' for these properties to take effect:

* LogFileName: The LogFileName property is a character vector that specifies the name of the
disk file that is used to store logged data. If the file does not exist, data will be logged to that
filename. If the file does exist, the LogToDiskMode property defines how the toolbox behaves.

* LogToDiskMode: The LogToDiskMode property controls how OPC Toolbox software handles disk
logging when the file specified by LogFileName already exists. Each time a logging task is
started, if the LoggingMode is set to 'disk' or 'disk&memory"', the toolbox checks to see if a
file with the name specified by the LogFileName property exists. If the file exists, the toolbox will
take the following action, based on the LogToDiskMode property:

* ‘'append': When LogToDiskMode is set to 'append’, logged data will be added to the
existing data in the file.

* ‘'overwrite': When LogToDiskMode is set to 'overwrite’, all existing data in the file will
be removed without warning, and new data will be logged to the file.

* ‘'index': When LogToDiskMode is set to 'index"', OPC Toolbox software automatically
changes the log filename, according to the following algorithm:

The first log filename attempted is specified by the initial value of LogFileName.

If the attempted filename exists, LogFileName is modified by adding a numeric identifier. For
example, if LogFileName is initially specified as 'groupRlog.olf"', then groupRlog.olf is
the first attempted filename, groupR1log01.olf is the second filename, and so on. If
LogFileName already contains numeric characters, they are used to determine the next
sequence in the modifier. For example, if the LogFileName is initially specified as

7-15

7 Reading, Writing, and Logging OPC Data

7-16

'groupRlog010.0lf"', and groupRlog010.olf exists, the next attempted file is
groupRlog@11.0lf, and so on.

The actual filename used is the first filename that does not exist. In this way, each consecutive
logging operation is written to a different file, and no previous data is lost.

Configure Logging Callbacks

You can configure the dagroup object so that MATLAB will automatically execute a function when
the logging task starts, when the logging task stops, and each time a specified number of records is
acquired during a logging task. The dagroup object has three callback properties that are used
during a logging session. Each callback property defines the action to take when a particular logging
event occurs:

» Start event: A start event is generated when a logging task starts.

* Records acquired event: A records acquired event is generated each time a logging task
acquires a set number of records.

» Stop event: A stop event is generated when a logging task stops, either automatically, or by the
user calling the stop function.

For an example of using callbacks in a logging task, see “View Recently Logged Data” on page 9-15.

Execute a Logging Task

Once you have configured your logging task you can execute the task. Executing a logging task
involves starting the logging task, monitoring the task progress, and stopping the logging task.

Start a Logging Task

You start a logging task by calling the start function, passing the dagroup object that you want to
start logging. The following example starts a logging task for the dagroup object grp.

start(grp)

When you start a logging task, certain group and item properties become read-only, as modifying
these properties during a logging task would corrupt the logging process. Also, the dagroup object
performs the following operations:

Generates a start event and executes the StartFcn callback.

If Subscriptionis 'off', sets Subscriptionto 'on' and issues a warning.

Removes all records associated with the object from the OPC Toolbox software engine.

Sets RecordsAcquired and RecordsAvailable to 0.

Sets the Logging property to 'on"'.

ua A W N R

Monitor the Progress of a Logging Task

During a logging task, you can monitor the progress of the task by examining the following properties
of the dagroup object:

* Logging: The Logging property is set to 'on' at the start of a logging task, and set to 'off'
when the logging task stops.

* RecordsAcquired: The RecordsAcquired property contains the number of records that have
been logged to the destination specified by the LoggingMode property. When a start function is

Log OPC Server Data

called, RecordsAcquired is set to 0. When RecordsAcquired reaches RecordsToAcquire,
the logging task stops automatically.

* RecordsAvailable: The RecordsAvailable property contains the number of records that have
been stored in the OPC Toolbox software engine for this logging task. Data is only logged to
memory if the LoggingMode is set to 'memory' or 'disk&memory'. You extract data from the
toolbox engine using the getdata function. See “Get Logged Data into the MATLAB Workspace”
on page 7-17 for more information on using getdata.

You can monitor these properties in the summary display of a dagroup object, by typing the name of
the dagroup object at the command line.

grp
grp =

Summary of OPC Data Access Group Object: groupl
Object Parameters

Group Type : private
Item : 1-by-1 daitem object
Parent : localhost/Matrikon.OPC.Simulation.1
Update Rate : 0.5
Deadband 1 0%
Object Status
Active :on
Subscription : on
Logging 1 on
Logging Parameters
Records 1 120
Duration : at least 60 seconds
Logging to : disk
Log File : groupllog.olf ('index' mode)
Status : 5 records acquired since starting.

0 records available for GETDATA/PEEKDATA
Stop a Logging Task
A logging task stops when one of the following conditions is met:

* The number of records logged reaches the value defined by the RecordsToAcquire property.
* You manually stop the logging task by using the stop function.

The following example manually stops the logging task for dagroup object grp.
stop(grp)

When a logging task stops, the Logging property is set to 'off', a stop event is generated, and the
StopFcn callback is executed.

Get Logged Data into the MATLAB Workspace

OPC Toolbox software does not log data directly to the MATLAB workspace. When logging to memory,
the data is buffered in the toolbox engine in a storage-efficient way. When logging to disk, the data is
logged in ASCII format. To analyze your data, you need to extract the data from the toolbox engine or
from a disk file into MATLAB for processing. This section describes how to get your logged data into
the MATLAB workspace. The following sections describe this process:

7-17

7 Reading, Writing, and Logging OPC Data

7-18

* “Retrieve Data from Memory” on page 7-18, discusses how to retrieve data from the toolbox
engine into MATLAB.

* “Retrieve Data from Disk” on page 7-19, discusses how to retrieve data from a disk file into
MATLAB.

Whether you log data to memory or to disk, you can retrieve that logged data in one of two formats:

* Structure format: This format stores each data change event in a structure. Data from a logging
task is simply an array of such structures.

* Array format: To visualize and analyze your data, you will need to work with the time series of
each of the items in the group. The array format is the logged structure data, “unpacked” into
separate arrays for the Value, Quality, and TimeStamp.

Retrieve Data from Memory

You retrieve data from memory using the getdata function, passing the dagroup object as the first
argument, and the number of records you want to retrieve as the second argument. The data is
returned as a structure containing data from each data change event in the logging task. For
example, to retrieve 20 records for the dagroup object grp:

s = getdata(grp, 20);

If you do not supply a second argument, getdata will try to retrieve the number of records specified
by the RecordsToAcquire property of the dagroup object. If the OPC Toolbox software engine
contains fewer records for the group than the number requested, a warning is generated and all of
the available records will be retrieved.

To retrieve data in array format, you must indicate the data type of the returned values. You pass a
character vector defining that data type as an additional argument to the getdata function. Valid
data types are any MATLAB numeric data type (for example, 'double' or 'uint32"') plus 'cell’ to
denote the MATLAB cell array data type.

When you specify a numeric data type or cell array as the data type for getdata, the logged data is
returned in separate arrays for the item IDs logged, the value, quality, time stamp, and the local event
time of each data change event logged. You must therefore specify up to five output arguments for
the getdata function when retrieving data in array format.

For example, to retrieve 20 records of logged data in double array format from dagroup object grp.
[itmID,val,qual,tStamp,evtTime] = getdata(grp,20, 'double');

Once you have retrieved data to the MATLAB workspace using getdata, the records are removed
from the toolbox engine to free up memory for additional logged records. If you specify a smaller
number of records than those available in memory, getdata will retrieve the oldest records. You can
use the RecordsAvailable property of the dagroup object to determine how many records the toolbox
engine has stored for that group.

During a logging task, you can examine the most recently acquired records using the peekdata
function, passing the dagroup object as the first argument, and the number of records to retrieve as
the second argument. Data is returned in a structure. You cannot return data into separate arrays
using peekdata. You can convert the structure returned by peekdata into separate arrays using the
opcstruct2array function. Data retrieved using peekdata is not removed from the toolbox engine.

For an example of using getdata and peekdata during a logging task, see “Overview of a Logging
Task” on page 7-13.

Log OPC Server Data

When you delete a dagroup object, the data stored in the toolbox engine for that object is also
deleted.

Retrieve Data from Disk

You can retrieve data from a disk file into the MATLAB workspace using the opcread function. You
pass the name of the file containing the logged OPC data as the first argument. The data stored in the
log file is returned as a structure array, in the same format as the structure returned by getdata.
Records retrieved from a log file into the MATLAB workspace are not removed from the log file.

You can specify a number of additional arguments to the opcread function, that control the records
that are retrieved from the file. The additional arguments must be specified by an option name and
the option value. The following options are available.

Option Name Option Value Description

‘items' Specify a cell array of item IDs that you want returned. Items not in this list
will not be read.

'dates’ Specify a date range for the event times. The range must be [startDt
endDt] where startDt and endDt are MATLAB date numbers.

'records'’ Specify the index of records to retrieve as [startRec endRec]. Records
outside these indices will not be read.

"datatype’ Specify the data type, as a character vector, that should be used for the

returned values. Valid data type character vectors are the same as for
getdata. If you specify a numeric data type or 'cell’, the output will be
returned in separate arrays. If you specify a numeric array data type such
as 'double’ or 'uint32', and the logged data contains arrays or
character vectors, an error will be generated and no data will be returned.

The following example retrieves the data logged during the example on page “Overview of a Logging
Task” on page 7-13, first into a structure array, and then records 3 to 6 are retrieved into separate
arrays for Value, Quality, and TimeStamp.

sDisk = opcread('LoggingExample.olf")

sDisk =

40x1 struct array with fields:
LocalEventTime
Items

[i,v,q,t,e] = opcread('LoggingExample.olf"',
'records',[3,6], 'datatype', 'double')
i =
'Random.Real8’ 'Random.UInt2' 'Random.Reald’
vV =

=

.0e+004 *

0.7819 3.0712 1.4771
1.5599 2.7792 2.2051
1.4682 0.4055 0.5315
0.0235 2.4473 1.5456

'Good: Non-specific' 'Good: Non-specific' 'Good: Non-specific'

'Good: Non-specific' 'Good: Non-specific' 'Good: Non-specific'
'Good: Non-specific' 'Good: Non-specific' 'Good: Non-specific'
'Good: Non-specific' 'Good: Non-specific' 'Good: Non-specific'

7-19

7 Reading, Writing, and Logging OPC Data

=l

.0e+005 *

7.3202 7.3202
7.3202 7.3202
7.3202 7.3202
7.3202 7.3202

.3202
.3202
.3202
.3202

NN

=l

.0e+005 *
7.3202
7.3202
7.3202
7.3202

Note For a record to be returned by opcread, it must satisfy all the options passed to opcread.

7-20

Working with OPC Data

When an OPC server returns data from a read or logging operation, three pieces of information make
up the data. The Value, Quality, and Timestamp all contribute information about the data point that is
returned. As a result, you need to understand how to deal with this information together, because one
aspect of the data in isolation will not provide a complete picture of the data returned by a read
operation, data change event, read async event, or toolbox logging task.

This chapter describes how OPC Toolbox software handles data returned by an OPC server.

* “OPC Data: Value, Quality, and TimeStamp” on page 8-2
* “Work with Structure-Formatted Data” on page 8-6

* “Array-Formatted Data” on page 8-11

* “Work with Different Data Types” on page 8-13

8 Working with OPC Data

OPC Data: Value, Quality, and TimeStamp

8-2

In this section...

“Introduction to OPC Data” on page 8-2
“Relationship Between Value, Quality, and TimeStamp” on page 8-2

“How Value, Quality, and TimeStamp Are Obtained” on page 8-3

Introduction to OPC Data

OPC servers provide access to many server items. To reduce network traffic between the server and
the “device” associated with each server item (a field instrument, or a memory location in a PLC,
SCADA, or DCS system) the OPC server stores information about each server item in the server's
“cache,” updating that information only as frequently as required to satisfy the requests of all clients
connected to that server. Because this process results in data in the cache that may not reflect the
actual value of the device, the OPC server provides the client with additional information about that
value.

This section describes the OPC Value, Quality, and TimeStamp properties, and how they should be
used together to assess the information provided by an OPC server.

Relationship Between Value, Quality, and TimeStamp

Every server item on an OPC server has three properties that describe the status of the device or
memory location associated with that server item:

* Value — The Value of the server item is the last value that the OPC server stored for that
particular item. The value in the cache is updated whenever the server reads from the device. The
server reads values from the device at the update rate specified by the dagroup object's
UpdateRate property, and only when the item and group are both active. You control the active
status of an item or group using that object’s Active property.

In addition, for analog type data (data with the additional OPC Foundation Recommended
Properties 'High EU' and 'Low EU') the percentage change between the cached value and the
device value must exceed the DeadbandPercent property specified for that item in order for the
cached value to be updated.

* Quality — The Quality of the server item is a character vector that represents information about
how well the cache value matches the device value. The Quality is made up of two parts: a major
quality, which can be 'Good', 'Bad’', or 'Uncertain’', and a minor quality, which describes the
reason for the major quality. For more information on Quality, see “OPC Quality” on page A-2.

The Quality of the server item can change without the Value changing. For instance, if the OPC
server attempts to obtain a Value from the device but that operation fails, the Quality will be
set to 'Bad'. Also, when you change the client’s Active property, the Quality will change.

You must always examine the Quality of an item before using the Value property of that item.

* TimeStamp — The TimeStamp of a server item represents the most recent time that the server
assessed that the device set the Value and Quality properties of that server item. The
TimeStamp can change without the Value changing. For example, if the OPC server obtains a
value from the device that is the same as the current Value, the TimeStamp property will still be
updated, even if the Value property is not.

OPC Data: Value, Quality, and TimeStamp

OPC Toolbox software provides access to the Value, Quality, and TimeStamp properties of a server
item through properties of the daitem object associated with that server item.

How Value, Quality, and TimeStamp Are Obtained

OPC Toolbox software provides all three OPC Data Access Standard mechanisms for reading data
from an OPC server. The toolbox uses these three mechanisms in various ways to return data from
those functions, to provide event information, to update properties of toolbox objects, and to log data
to memory and disk.

The way OPC Toolbox software uses the three OPC Data Access mechanisms is described in the
following sections:

* “OPC Data Returned from Synchronous Read Operations” on page 8-3 describes the
synchronous read mechanism used by the read function.

* “OPC Data Returned in Asynchronous Read Operations” on page 8-3 describes the
asynchronous read mechanism used by the readasync function.

* “OPC Data Returned from a Data Change Event” on page 8-4 describes the data change event
notification mechanism used with subscribed, active groups, with the refresh function, and by the
toolbox logging process.

OPC Data Returned from Synchronous Read Operations

You initiate a synchronous read operation by using the read function. When you read from a
dagroup object, all items in that group are read in one instruction.

You can specify the source of a synchronous read operation as 'cache' or 'device’. If you read
from the cache, the server simply returns the value in the cache. If you read from the device, the
server will get the value from the device and update the cache before sending the Value, Quality, and
TimeStamp information back as part of the read operation.

OPC Toolbox software returns the data in the output structure from the read operation. Each element
of the structure array contains information about one of the items read.

Whenever you read values using the read function, the toolbox updates the daitem object's Value,
Quality, and TimeStamp properties with the values read from the server.

OPC Data Returned in Asynchronous Read Operations

You initiate an asynchronous read operation by using the readasync function. When you read from a
dagroup object, all items in that group are read in one instruction.

Asynchronous read operations always use the device as the source of the read. Whenever you send an
asynchronous read request, the server will read values from the devices connected to the items. The
server will then update that server item's Value, Quality, and TimeStamp in the cache before sending
an asynchronous read event back to the toolbox.

OPC Toolbox software returns information from an asynchronous read operation via the read async
event structure. This event structure is stored in the opcda client object's event log, which you can
access using the EventLog property of the client. The event structure is also passed to the callback
function defined in the ReadAsyncFcn property of the dagroup object that initiated the
asynchronous read operation. For more information on the format of the event structures, see “Event
Structures” on page 9-8.

8-3

8 Working with OPC Data

8-4

When an asynchronous read operation succeeds, in addition to returning data via the event
structures, the toolbox also updates the Value, Quality, and TimeStamp properties of the
associated daitem object.

OPC Data Returned from a Data Change Event

The third mechanism for getting data from an OPC server involves the data change event. The OPC
server generates a data change event for a group at the period specified by the UpdateRate property
when the Value or Quality of an item in the group changes. You do not have to specifically request a
data change event, because the OPC server will automatically generate a data change event.
However, you can force a data change event at any time using the refresh function.

An OPC server will generate a data change event only for an active, subscribed group containing
active items. You control the active status of dagroup objects and daitem objects by setting their
Active property. You control the subscribed status of a dagroup object by setting the
Subscription property of the dagroup object.

The following points describe how an OPC server generates a data change event:

* When you configure a group, you define the rate at which the server must scan items in that
group. This rate is controlled by the UpdateRate property for a dagroup object. The server
updates the Value, Quality, and TimeStamp values in the cache for the items in that group at the
required update rate. Note that if a device cannot provide a value in that time, the server may
reduce the rate at which it updates the value in the server cache for that item.

* Ifyou set an item's Active property to 'off', the server will stop scanning that item. You must
set the Active property to 'on' for the server to scan the item again.

« Ifyou set the Active property of a dagroup object to 'off"', the server will stop scanning all
items in that group. You can still perform asynchronous read operations, and synchronous read
operations from the 'device’, but no operations involving the server cache can be performed.
You must set the Active property to 'on' to enable operations involving the server cache.

* Ifthe Subscription property for a dagroup object is set to 'on', then every time the server
updates cache values for the items in that group, the server will send a data change event for that
group, to the client object. The data change event contains information about every item whose
Value, Quality, or TimeStamp updated.

* Ifyou set the Subscription property to 'off"', then the OPC server will not generate data
change events. However, as long as the group is still active, the OPC server will continue to scan
all active items for that group, at the rate specified by the UpdateRate property.

When the OPC server generates a data change event, OPC Toolbox software performs the following
tasks:

1 The daitem object Value, Quality, and TimeStamp properties are updated for each item that
is included in the data change event.

2 The callback function defined by the DataChangeFcn property of the dagroup object is called.
For more information on callbacks, see “Create and Execute Callback Functions” on page 9-12.

3 Ifthe group is logging data, the data change event is stored in memory and/or on disk. For more
information on logging, see “Log OPC Server Data” on page 7-12.

4 If the group is logging, and the number of records acquired is a multiple of the
RecordsAcquiredFcnCount property of the dagroup object, then the callback function defined
by the RecordsAcquiredFcn property of the dagroup object is called. For more information on
callbacks, see “Create and Execute Callback Functions” on page 9-12.

OPC Data: Value, Quality, and TimeStamp

For more information on the structure of a data change event, see “Data Fields for Cancel Async,
Data Change, Error, Read Async, and Write Async Events” on page 9-8.

8 Working with OPC Data

Work with Structure-Formatted Data

8-6

In this section...

“When Structures Are Used” on page 8-6

“Perform a Read Operation on Multiple Items” on page 8-6
“Interpret Structure-Formatted Data” on page 8-7

“When to Use Structure-Formatted Data” on page 8-9

“Convert Structure-Formatted Data to Array Format” on page 8-9

When Structures Are Used

OPC Toolbox software uses structures to return data from an OPC server, for the following
operations:

* Synchronous read operations, executed using the read function.

* Asynchronous read operations, executed using the readasync function.

» Data change events generated by the OPC server for all active, subscribed groups or through a
refresh function call.

* Retrieving logged data in structure format from memory using the getdata or peekdata
functions.

In all cases, the structure of the returned data is the same. This section describes that structure, and
how you can use the structure data to understand OPC operations.

Perform a Read Operation on Multiple Items

To illustrate how to use structure-formatted data, the following example reads values from three
items on the Matrikon OPC Simulation Server.

Step 1: Create OPC Toolbox Group Objects

This example creates a hierarchy of OPC Toolbox objects for the Matrikon Simulation Server. To run
this example on your system, you must have the Matrikon Simulation Server installed. Alternatively,
you can replace the values used in the creation of the objects with values for a server you can access.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1"');
connect(da);

grp = addgroup(da, 'StructExample');

(
itml = additem(grp, 'Random.Real8"');
itm2 = additem(grp, 'Saw-toothed Waves.UInt2');
itm3 = additem(grp, 'Random.Boolean');

Step 2: Read Data

This example reads values first from the device and then from the server cache. The data is returned
in structure format.

read(grp, 'device');
read(grp);

ri
r2

Work with Structure-Formatted Data

Step 3: Interpret the Data

The data is returned in structure format. To interpret the data, you must extract the relevant
information from the structures. In this example, you compare the Value, Quality, and TimeStamp to
confirm that they are the same for both read operations.

disp({rl.ItemID;rl.Value;r2.Value})
disp({rl.ItemID;rl.Quality;r2.Quality})
disp({rl.ItemID;rl.TimeStamp;r2.TimeStamp})
Step 4: Read More Data

By reading first from the cache and then from the device, you can compare the returned data to see if
any change has occurred. In this case, the data will not be the same.

r3 = read(grp);

r4 = read(grp, “device');
disp({r3.ItemID;r3.Value;r4.Value})
Step 5: Clean Up

Always remove toolbox objects from memory, and the variables that reference them, when you no
longer need them.

disconnect(da)

delete(da)
clear da grp itml itm2 itm3

Interpret Structure-Formatted Data

All data returned by the read, opcread, and getdata functions, and included in the data change
and read async event structures passed to callback functions, has the same underlying format. The
format is best explained by starting with the output from the read function, which provides the basic
building block of structure-formatted data.

Structure-Formatted Data for a Single Item

When you execute the read function with a single daitem object, the following structure is returned.
rSingle = read(itml)

rSingle

ItemID: 'Random.Real8'
Value: 1.0440e+004
Quality: 'Good: Non-specific'
TimeStamp: [2004 3 10 14 46 9.5310]
Error: "'

All structure-formatted data for an item will contain the ItemID, Value, Quality, and TimeStamp
fields.

Note The Error field in this example is specific to the read function, and is used to indicate any
error message the server generated for that item.

8 Working with OPC Data

8-8

Structure-Formatted Data for Multiple Items

If you execute the read function with a group object containing more than one item, a structure
array is returned.

rGroup = read(grp)
rGroup =

3x1 struct array with fields:
ItemID
Value
Quality
TimeStamp
Error

In this case, the structure array contains one element for each item that was read. The ItemID field
in each element identifies the item associated with that element of the structure array.

Note When you perform asynchronous read operations, and for data change events, the order of the
items in the structure array is determined by the OPC server. The order may not be the same as the
order of the items passed to the read function.

Structure-Formatted Data for Events

Event structures contain information specifically about the event, as well as the data associated with
that event.

The following example displays the contents of a read async event.
cleareventlog(da);

tid = readasync(itm);

% Wait for the read async event to occur

pause(1);

event = get(da, 'EventlLog')

event =

Type: 'ReadAsync'
Data: [1x1 struct]

The Data field of the event structure contains
event.Data
ans =
LocalEventTime: [2004 3 11 10 59 57.6710]
TransID: 4
GroupName: 'StructExample'

Items: [1x1 struct]

The Items field of the Data structure contains

event.Data.Items

Work with Structure-Formatted Data

ans =

ItemID: 'Random.Real8'’
Value: 9.7471e+003
Quality: 'Good: Non-specific'
TimeStamp: [2004 3 11 10 59 57.6710]

From the example, you can see that the event structure embeds the structure-formatted data in the
Items field of the Data structure associated with the event. Additional fields of the Data structure
provide information on the event, such as the source of the event, the time the event was received by
the toolbox, and the transaction ID of that event.

Structure-Formatted Data for a Logging Task

OPC Toolbox software logs data to memory and/or disk using the data change event. When you return
structure-formatted data for a logging task using the opcread or getdata function, the returned
structure array contains the data change event information arranged in a structure array. Each
element of the structure array contains a record, or data change event. The structure array has the
LocalEventTime and Items fields from the data change event. The Items field is in turn a
structure array containing the fields ItemID, Value, Quality, and TimeStamp.

When to Use Structure-Formatted Data

For the read, read async and data change events, you must use structure-formatted data. However,
for a logging task, you have the option of retrieving the data in structure format, or numeric or cell
array format.

For a logging task, you should use structure-formatted data when you are interested in

* The “raw” event information returned by the OPC server. The raw information may help in
diagnosing the OPC server configuration or the client configuration. For example, if you see a data
value that does not change frequently, yet you know that the device should be changing frequently,
you can examine the structure-formatted data to determine when the OPC server notifies clients
of a change in Value, Quality and/or TimeStamp.

* Timing information rather than time series data. If you need to track when an operator changed
the state of a switch, structure-formatted data provides you with event-based data rather than
time series data.

For other tasks that involve time series data, such as visualization of the data, analysis, modeling, and
optimization operations, you should consider using the cell or numeric array output format for
getdata and opcread. For more information on array formats, see “Array-Formatted Data” on page
8-11.

Convert Structure-Formatted Data to Array Format

If you retrieve data from memory or disk in structure format, you can convert the resulting structure
into array format using the opcstruct2array function. You pass the structure array to the function,
and it will return the ItemID, Value, Quality, TimeStamp, and EventTime information contained
in that structure array.

The opcstruct2array function is particularly useful when you want to visualize or analyze time
series data without removing it from memory. Because peekdata only returns structure arrays (due

8-9

8 Working with OPC Data

8-10

to speed considerations), you can use opcstruct2array to convert the contents of the structure
data into separate arrays for visualization and analysis purposes.

Note You should always retrieve data in numeric or cell array format whenever you only want to
manipulate the time series data. Although the opcstruct2array function has been designed to use
as little memory as possible, conversion in MATLAB software still requires storage space for both the
structure array and the resulting arrays.

For an example of using opcstruct2array, see “Write a Callback Function” on page 9-12.

Array-Formatted Data

Array-Formatted Data

In this section...

“Array Content” on page 8-11

“Conversion of Logged Data to Arrays” on page 8-11

Array Content

OPC Toolbox software can return arrays of Value, Quality, and TimeStamp information from a logging
task. You can retrieve arrays from memory using getdata, or from disk using opcread, by
specifying the data type as 'cell' or any MATLAB numeric array data type, such as 'double’ or
"uint32'. Consult the function reference pages for details on how to specify the data type.

When you request array-formatted data, the toolbox returns arrays of each of the following elements
of the records in memory or on disk:

 ItemID — A 1-by-nItems list of all item IDs occurring in the structure array. Each record is
searched and all unique item IDs are returned in a cell array. The order of the item IDs must be
used to interpret any of the Value, Quality, or TimeStamp arrays.

* Value — An nRecs-by-nItems array of values for each item ID defined in the ItemID variable, at
each time stamp defined by the TimeStamp array. Each column of the Value array represents the
history of values for the corresponding item in the ItemID array. Each row corresponds to one
record. See “Treatment of Missing Data” on page 8-12 for information on how the Value array is
populated.

* Quality — An nRecs-by-nItems cell array of character vectors. Each column represents the
history of qualities for the corresponding item in the ItemID array. Each row corresponds to the
qualities for a particular record. If a particular item ID was not part of a record (because the item
did not change during that period), the corresponding column in that row is set to 'Repeat'.

* TimeStamp — An nRecs-by-nItems array of time stamps for each value in the Value field. The
time stamps are in MATLAB date number format. For more information on MATLAB date numbers,
see the datenum function help.

* EventTime — An nRecs-by-1 array of times that the record was received by OPC Toolbox
software (the LocalEventTime field of the record in structure format). The times are in MATLAB
date number format. For more information on MATLAB date numbers, see the datenum function
help.

Conversion of Logged Data to Arrays

When you request array-formatted data from getdata or opcread, you must define the desired data
type for the returned Value array. OPC Toolbox software automatically converts each record of
logged data from the item's data type (defined by the DataType property of that item) to the
requested data type.

When converting logged data to arrays, the toolbox must consider two factors when populating the
returned arrays:

* A record may not contain information for every item in the logging task. “Treatment of Missing
Data” on page 8-12 discusses how the toolbox deals with missing data.

8-11

8 Working with OPC Data

8-12

* A record may contain an array value for a single item. Such values cannot easily be converted to a
single value of numeric data types. “Treatment of Array Data Values” on page 8-12 discusses how
the toolbox deals with this issue.

Treatment of Missing Data

When OPC Toolbox software logs data, each logged record may not contain all items in the logging
task. When converting the data to array format, every item involved in the logging task must be
allocated a value, a quality, and a time stamp for each record. Therefore, in a logging task there may
be "missing" data for a particular item in a particular record. The toolbox uses the following rules to
determine how to fill the missing entry in each array:

* Value — When you request the 'cell’' array data type, the value used for the missing entry is an
empty double array ([]). When requesting a numeric data type, the value used for the missing
entry is the last value for that item. If no previous value is known, the equivalent NaN (not a
number) entry is used. For example, if the very first record does not contain an entry for that item,
NaN is used to fill in the missing entry in the first row of the Value array. The equivalent NaN
value for integer and logical data types is 0.

* Quality — The missing entry is filled with the specific quality of 'Repeat’.

* TimeStamp — The time stamp used for the missing entry is the first time stamp found in that
particular record (row).

Treatment of Array Data Values

For each record stored in memory or on disk during a logging task, a single item may return an array
of values. When converting logged data to array format, each item in each record has only one entry
in the Value array allocated to that record and item.

For the 'cell' data type, OPC Toolbox software is able to store the array returned as the Value for
that element, because a MATLAB cell array is able to store any data type of any size in each element
of the cell array.

For numeric data types, such as 'double' or 'uint32', the resulting Value array provides space
for only a single value. Consequently, if an array value is found in a logging task, and you have
requested a numeric array data type, an error will be generated. You must use the 'cell' data type
or the structure format to return logged data that contains arrays as values.

Work with Different Data Types

Work with Different Data Types

In this section...

“Conversion Between MATLAB Data Types and COM Variant Data Types” on page 8-13
“Conversion of Values Written to an OPC Server” on page 8-14

“Conversion of Values Read from an OPC Server” on page 8-14

“Handling Arrays for Item Values” on page 8-15

Conversion Between MATLAB Data Types and COM Variant Data Types

The OPC Data Access Standard uses the Microsoft COM Specification for communication between the
OPC server and OPC client. A significant amount of the data exchanged between the OPC server and
the client is the value from a server item or the value that a client wants to write to a server item. The
Microsoft COM Specification uses Microsoft Variants to send different data types between the client
and server. This section discusses how OPC Toolbox software converts MATLAB data types to COM
Variants when writing values, and COM Variants to MATLAB data types when reading values.

OPC servers require all values to be written to server items in COM Variant format. The server also
provides the toolbox with COM Variants when an item's Value property is read or returned by the
server. The toolbox automatically converts between the COM Variant type and MATLAB data types
according to the table shown below.

8-13

8 Working with OPC Data

Table 8-1, Conversion from MATLAB Data Type to COM Variant Data Type

MATLAB Data Type OPC Server Data Type Remarks
(COM Variant Type)

double VT R8

single VT R4

char VT BSTR

logical VT BOOL

uint8 VT UIl

uint16 VT UI2

uint32 VT UI4

uint64 VT UI8

int8 VT I1

int16 VT 12

int32 VT 14

int64 VT I8

function handle N/A Not allowed

cell N/A Not allowed

struct N/A Not allowed

object N/A Not allowed

N/A VT DISPATCH Not allowed

N/A VT _BYREF Not allowed

double VT _EMPTY Returns the empty matrix ([])

Conversion of Values Written to an OPC Server

When you write values to the OPC server using the write or writeasync function, you can provide
any MATLAB data for the write operation. When you write data to an OPC server, the following data

conversions take place:

1 OPC Toolbox software converts the value into the equivalent COM Variant according to Table 8-1,
Conversion from MATLAB Data Type to COM Variant Data Type. If any disallowed data type is
encountered (for example, if you attempt to write a MATLAB structure), an error will be

generated.

The COM Variant is sent to the OPC server.

3 The OPC server will attempt to convert the COM Variant to the server item's canonical data type,
using COM Variant conversion rules. If the conversion fails, the server will return an error.

Conversion of Values Read from an OPC Server

When an OPC server returns values for a server item to MATLAB, the OPC server will first convert
the value to the COM Variant equivalent of the data type specified by the daitem object's DataType
property. If the conversion fails, an error message is returned with the value. When OPC Toolbox

8-14

Work with Different Data Types

software receives the value, the COM Variant is converted to the equivalent MATLAB data type
according to Table 8-1, Conversion from MATLAB Data Type to COM Variant Data Type.

Handling Arrays for Item Values

The OPC Specification supports arrays of values being written to a server item, and read from a
server item. However, a specific server item may not accept an array of values. The behavior of the
server in that case is server-dependent. For example, one server may use only the first value of the
array. Another server may return an error when attempting to write an array of values to a server
item that only supports a scalar value. OPC Toolbox software is not able to determine if a server item
accepts only scalar values.

For all of the data types listed in Table 8-1, Conversion from MATLAB Data Type to COM Variant Data
Type that can be converted between MATLAB and a COM Variant, scalar and array data are
permitted by the toolbox. However, the OPC Specification supports only one-dimensional arrays of
data. Higher dimension MATLAB arrays are flattened into a one-dimensional vector when writing
data to the OPC server.

8-15

Using Events and Callbacks

You can enhance the power and flexibility of your OPC application by using event callbacks. An event
is a specific occurrence that can happen while an OPC Data Access client object (opcda client object)
is connected to an OPC server. The toolbox defines a set of events that include starting, stopping, or

acquiring records during a logging task, as well as events for asynchronous reads and writes, data
changes, and server shutdown notification.

When a particular event occurs, the toolbox can execute a function that you specify. This is called a
callback. Certain events can result in one or more callbacks. You can use callbacks to perform
processing tasks while your client object is connected. For example, you can display a message,
analyze data, or perform other tasks. Callbacks are controlled through OPC Toolbox object properties.
Each event type has an associated property. You specify the function that you want executed as the

value of that property.

* “Use the Default Callback Function” on page 9-2

+ “Event Types” on page 9-4

* “Retrieve Event Information” on page 9-8

* “Create and Execute Callback Functions” on page 9-12

9 Using Events and Callbacks

Use the Default Callback Function

9-2

In this section...

“Overview to Callback Example” on page 9-2

“Step 1: Create OPC Toolbox Group Objects” on page 9-2
“Step 2: Configure the Logging Task Properties” on page 9-2
“Step 3: Configure the Callback Properties” on page 9-2
“Step 4: Start the Logging Task” on page 9-3

“Step 5: Clean Up” on page 9-3

Overview to Callback Example

To illustrate how to use callbacks, this section presents a simple example that creates an OPC Toolbox
object hierarchy and associates a callback function with the start event, records acquired event, and
stop event of the OPC Data Access Group object (dagroup object). For information about all the
event callbacks supported by the toolbox, see “Event Types” on page 9-4.

The example uses the default callback function provided with the toolbox, opccallback. The default
callback function displays the name of the object along with information about the type of event that
occurred and when it occurred. To learn how to create your own callback functions, see “Create and
Execute Callback Functions” on page 9-12.

Step 1: Create OPC Toolbox Group Objects

This example creates a hierarchy of OPC Toolbox objects for the Matrikon Simulation Server. To run
this example on your system, you must have the Matrikon Simulation Server installed. Alternatively,
you can replace the values used in the creation of the objects with values for a server you can access.

da = opcda('localhost', '"Matrikon.OPC.Simulation.1");
connect(da);

grp = addgroup(da, 'CallbackTest');

itm = additem(grp,{'Random.Real8"', 'Saw-toothed Waves.UInt2'});

Step 2: Configure the Logging Task Properties

For this example, we log 20 records at 0.5-second intervals.
grp.RecordsToAcquire = 20;
grp.UpdateRate = 0.5;

Step 3: Configure the Callback Properties

Set the values of three callback properties. The example uses the default callback function
opccallback.

grp.StartFcn = @opccallback;
grp.StopFcn = @opccallback;
grp.RecordsAcquiredFcn = @opccallback;

For this example, specify how often to generate a records acquired event.

Use the Default Callback Function

grp.RecordsAcquiredFcnCount = 5;

Step 4: Start the Logging Task

Start the dagroup object. The object logs 20 records at 0.5-second intervals, and then stops. With the
three callback functions enabled, the object outputs information about each event as it occurs. The
records acquired event occurs four times for this example.

start(grp)

OPC Start event occurred at local time 18:52:38
Group 'CallbackTest': 0 records acquired.

OPC RecordsAcquired event occurred at local time 18:52:41
Group 'CallbackTest': 5 records acquired.

OPC RecordsAcquired event occurred at local time 18:52:44
Group 'CallbackTest': 10 records acquired.

OPC RecordsAcquired event occurred at local time 18:52:47
Group 'CallbackTest': 15 records acquired.

OPC RecordsAcquired event occurred at local time 18:52:49
Group 'CallbackTest': 20 records acquired.

OPC Stop event occurred at local time 18:52:49
Group 'CallbackTest': 20 records acquired.

Step 5: Clean Up

Always remove toolbox objects from memory, and the variables that reference them, when you no
longer need them.

disconnect(da)

delete(da)
clear da grp itm

9-3

9 Using Events and Callbacks

Event Types

9-4

OPC Toolbox software supports several different types of events. Each event type has an associated
toolbox object property that you can use to specify the function that executes when the event occurs.

The following table lists the supported event types, the name of the object property associated with
the event, and a brief description of the event, including the object class associated with the event.
For detailed information about these callback properties, see the reference information for the
property.

The toolbox generates a specific set of information for each event and stores it in an event structure.
To learn more about the contents of these event structures and how to retrieve this information, see
“Retrieve Event Information” on page 9-8.

Event Types

Events and Callback Function Properties

Event

Callback Property

Description

Cancel Async

CancelAsyncFcn

The toolbox generates a cancel async event when an
asynchronous operation is cancelled. You cancel an
asynchronous operation using the cancelasync function.

When a cancel async event occurs, the toolbox executes the
function specified by the CancelAsyncFcn property. By
default, the toolbox executes the default callback function for
this event, opccallback, which displays information about
the cancel async event at the MATLAB command line.

Cancel async events occur at the dagroup object level.

Data Change

DataChangeFcn

The toolbox generates a data change event when the server
notifies the toolbox that data for a group has changed. The
server will notify the toolbox of data changes only if the
group's Active property is set to 'on' and the
Subscription property is set to 'on'. For more information
on controlling data change events, see “Data Change Events
and Subscription” on page 7-9.

When a data change event occurs, the toolbox executes the
function specified by the DataChangeFcn property.

Data change events occur at the dagroup object level.

Error

ErrorFcn

The toolbox generates an error event when a run-time error
occurs, such as a data type conversion error or time-out. Run-
time errors do not include configuration errors such as
setting an invalid property value.

When an error event occurs, the toolbox executes the
function specified by the ErrorFcn property. By default, the
toolbox executes the default callback function for this event,
opccallback, which displays the error message at the
MATLAB command line.

Error events occur at the opcda client object level.

Read Async

ReadAsyncFcn

The toolbox generates a read async event when an
asynchronous read operation completes. You execute an
asynchronous read operation using the readasync function.

When a read async event occurs, the toolbox executes the
function specified by the ReadAsyncFcn property. By default,
the toolbox executes the default callback function for this
event, opccallback, which displays information about the
read async event at the MATLAB command line.

Read async events occur at the dagroup object level.

9 Using Events and Callbacks

Event

Callback Property

Description

Records
Acquired

RecordsAcquiredFcn

The toolbox generates a records acquired event every time an
integer multiple of a specified number of records have been
acquired. You use the RecordsAcquiredFcnCount property
to specify this number.

When a records acquired event occurs, the toolbox executes
the function specified by the RecordsAcquiredFcn

property.

Records acquired events occur at the dagroup object level.

Shutdown

ShutDownFcn

The toolbox generates a shutdown event when the OPC
server notifies the client that the server is about to shut
down.

When a shutdown event occurs, the toolbox executes the
function specified by the ShutDownFcn property, and the
client object is then disconnected from the server. By default,
the toolbox executes the default callback function for this
event, opccallback, which displays information about the
shutdown event at the MATLAB command line.

Shutdown events occur at the opcda client object level.

Start

StartFcn

The toolbox generates a start event when an object is started.
You use the start function to start an object.

Note If an error occurs in the start callback function, the
object does not start.

When a start event occurs, the toolbox executes the function
specified by the StartFcn property.

Start events occur at the dagroup object level.

Stop

StopFcn

The toolbox generates a stop event when the object stops
running. An object stops running when the stop function is
called, or when the specified number of records is acquired.

When a stop event occurs, the toolbox executes the function
specified by the StopFcn property.

Stop events occur at the dagroup object level.

9-6

Event Types

Event

Callback Property

Description

Timer

TimerFcn

The toolbox generates a timer event when an integer multiple
of a specified amount of time expires. You use the
TimerPeriod property to specify the amount of time. Time is
measured relative to when the opcda client object is
connected.

Note Some timer events might not execute if your system is
significantly slowed or if the TimerPeriod is set too small.

When a timer event occurs, the toolbox executes the function
specified by the TimerFcn property.

Timer events occur at the opcda client object level.

Write Async

WriteAsyncFcn

The toolbox generates a write async event when an
asynchronous write operation completes. You execute an
asynchronous write operation using the writeasync
function.

When a write async event occurs, the toolbox executes the
function specified by the WriteAsyncFcn property. By
default, the toolbox executes the default callback function for
this event, opccallback, which displays information about
the write async event at the MATLAB command line.

Write async events occur at the dagroup object level.

9 Using Events and Callbacks

Retrieve Event Information

9-8

In this section...

“Event Structures” on page 9-8

“Access Data in the Event Log” on page 9-10

Event Structures

Each event has a set of information associated with that event. The information is generated by the
OPC server or the OPC Toolbox software, and stored in an event structure. This information includes
the event type, the time the event occurred, and other event-specific information. For some events,
the toolbox records event information in the opcda client object's EventLog property. You can also
access the event structure associated with an event in a callback function.

For information about accessing event information in a callback function, see “Create and Execute
Callback Functions” on page 9-12.

An event structure contains two fields: Type and Data. For example, this is an event structure for a
start event.

Type: 'Start’
Data: [1x1 struct]

The Type field is a character vector that specifies the event type. For a start event, this field contains
the value 'Start'.

The Data field is a structure that contains information about the event. The composition of this
structure varies, depending on which type of event occurred. For details about the information
associated with specific events, see the following sections:

» “Data Fields for Cancel Async, Data Change, Error, Read Async, and Write Async Events”
on page 9-8

» “Data Fields for Start, Stop, and Records Acquired Events” on page 9-9

* “Data Fields for Shutdown Events” on page 9-9

» “Data Fields for Timer Events” on page 9-9

Data Fields for Cancel Async, Data Change, Error, Read Async, and Write Async Events

For cancel async, data change, error, read async, and write async events, the Data structure contains
these fields.

Field Name Description

GroupName The name of the group associated with the event.

LocalEventTime Absolute time the event occurred, returned in MATLAB date vector
format:

[year month day hour minute seconds]

TransID The transaction ID for the operation. In the case of a cancel async
event, TransID contains the transaction ID that was cancelled.

Retrieve Event Information

Field Name

Description

Items

A structure array containing information about each item in the
asynchronous operation. The cancel async event structure does not
contain this field.

The Items structure array for read async events contains the following fields.

Field Name Description

ItemID The item ID for this record in the structure array.

Value The data value.

Quality The data quality as a character vector.

TimeStamp The time the OPC server updated the value and quality. The time is

returned in MATLAB date vector format:

[year month day hour minute seconds]

The Items structure array for write async events contains one field: ItemID.

The Items structure array for error events contains the ItemID field and an Error field, containing a
character vector describing the error that occurred for that item.

Data Fields for Start, Stop, and Records Acquired Events

For start, stop, and records acquired events, the Data structure contains these fields.

Field Name Description

GroupName The name of the group associated with the event.

LocalEventTime Absolute time the event occurred, returned in MATLAB date vector
format:
[year month day hour minute seconds]

RecordsAcquired The total number of records acquired in the current logging session.

Data Fields for Shutdown Events

For shutdown events, the Data structure contains these fields.

Field Name Description

LocalEventTime Absolute time the event occurred, returned in MATLAB date vector
format:
[year month day hour minute seconds]

Reason A character vector containing the reason the OPC server provided for
shutting down.

Data Fields for Timer Events

For timer events, the Data structure contains these fields.

9-9

9 Using Events and Callbacks

9-10

Field Name Description
LocalEventTime Absolute time the event occurred, returned in MATLAB date vector
format:

[year month day hour minute seconds]

Access Data in the Event Log

While an opcda client object is connected, the toolbox stores event information in the opcda client
object's EventLog property. The value of this property is an array of event structures. Each structure
represents one event. For detailed information about the composition of an event structure for each
type of event, see “Event Structures” on page 9-8.

The toolbox adds event structures to the EventLog array in the order in which the events occur. The
first event structure reflects the first event recorded, the second event structure reflects the second
event recorded, and so on.

Note Data change events, records acquired events, and timer events are not included in the
EventLog. Event structures for these events (and all the other events) are available to callback
functions. For more information, see “Create and Execute Callback Functions” on page 9-12.

To illustrate the event log, this example creates an OPC Toolbox object hierarchy, executes a logging
task, and then examines the object's EventLog property:

Step 1: Create the OPC Toolbox Object Hierarchy

This example creates a hierarchy of OPC Toolbox objects for the Matrikon Simulation Server. To run
this example on your system, you must have the Matrikon Simulation Server installed. Alternatively,
you can replace the values used in the creation of the objects with values for a server you can access.

da = opcda('localhost', 'Matrikon.OPC.Simulation.1");
connect(da);

grp = addgroup(da, 'CallbackTest');

itml = additem(grp, 'Triangle Waves.Real8');

Step 2: Start the Logging Task

Start the dagroup object. By default, the object acquires 120 records at 0.5-second intervals, and
then stops. Wait for the object to stop logging data.

start(grp)
wait(grp)

Step 3: View the Event Log

Access the EventLog property of the opcda client object. The execution of the group logging task
generated two events: start and stop. Thus the value of the EventLog property is a 1-by-2 array of
event structures.

events = da.EventLog

events =

Retrieve Event Information

1x2 struct array with fields:

Type
Data

To list the events that are recorded in the EventLog property, examine the contents of the Type field.

{events.Type}

ans =
'Start' ‘Stop'

To get information about a particular event, access the Data field in that event structure. The
example retrieves information about the stop event.

stopdata = events(2).Data

stopdata =
LocalEventTime: [2004 3 2 21 33 45.8750]
GroupName: 'CallbackTest!'
RecordsAcquired: 120

Step 4: Clean Up

Always remove toolbox objects from memory, and the variables that reference them, when you no
longer need them. Deleting the opcda client object also deletes the group and item objects.

disconnect(da)

delete(da)
clear da grp itml

9-11

9 Using Events and Callbacks

Create and Execute Callback Functions

9-12

In this section...

“Create Callback Functions” on page 9-12
“Specify Callback Functions” on page 9-13

“View Recently Logged Data” on page 9-15

Create Callback Functions

The power of using event callbacks is that you can perform processing in response to events. You
decide which events with which you want to associate callbacks, and which functions these callbacks
execute.

Note Callback function execution might be delayed if the callback involves a CPU-intensive task, or if
MATLAB software is processing another task.

Callback functions require at least two input arguments:

* The OPC Toolbox object
* The event structure associated with the event

The function header for this callback function illustrates this basic syntax.

function mycallback(obj,event)

The first argument, obj, is the toolbox object itself. Because the object is available, you can use in
your callback function any of the toolbox functions, such as getdata, that require the object as an
argument. You can also access all object properties, including the parent and children of the object.

The second argument, event, is the event structure associated with the event. This event information
pertains only to the event that caused the callback function to execute. For a complete list of
supported event types and their associated event structures, see “Event Structures” on page 9-8.

In addition to these two required input arguments, you can also specify application-specific
arguments for your callback function.

Note If you specify input arguments in addition to the object and event arguments, you must use a
cell array when specifying the name of the function as the value of a callback property. For more
information, see “Specify Callback Functions” on page 9-13.

Write a Callback Function

This example implements a callback function for a records acquired event. This callback function
enables you to monitor the records being acquired by viewing the most recently acquired records in a
plot window.

To implement this function, the callback function acquires the last 60 records of data (or fewer if not
enough data is available in the OPC Toolbox software engine) and displays the data in a MATLAB

Create and Execute Callback Functions

figure window. The function also accesses the event structure passed as an argument to display the
time stamp of the event. The drawnow command in the callback function forces MATLAB to update
the display.

function display opcdata(obj,event)

numRecords = min(obj.RecordsAvailable, 100);
lastRecords = peekdata(obj,numRecords);

[i, v, q, t] = opcstruct2array(lastRecords);
plot(t, v);

isBad = strncmp('Bad', q, 3);

isRep = strncmp('Repeat', q, 6);

hold on

for k=1:1length(i)
h = plot(t(isBad(:,k),k), v(isBad(:,k),k), '0');
set(h, '"MarkerkEdgeColor', 'k', 'MarkerFaceColor','r"')
h = plot(t(isRep(:,k),k), v(isRep(:,k),k), '"*');
set(h, '"MarkerEdgeColor',[0.75, 0.75, 0]);

end

axis tight;

ylim([0, 200]);

datetick('x"', 'keeplimits');

eventTime = event.Data.LocalEventTime;

title(sprintf('Event occurred at %s',
datestr(eventTime, 13)));

drawnow; % force an update of the figure window

hold off;

To see how this function can be used as a callback, see “View Recently Logged Data” on page 9-15.

Specify Callback Functions

You associate a callback function with a specific event by setting the value of the OPC Toolbox object
property associated with that event. You can specify the callback function as the value of the property
in one of three ways:

» “Use a Character Vector to Specify Callback Functions” on page 9-13

* “Use a Cell Array to Specify Callback Functions” on page 9-14

* “Use Function Handles to Specify Callback Functions” on page 9-14

The following sections provide more information about each of these options.

Note To access the object or event structure passed to the callback function, you must specify the
function as a cell array or as a function handle.

Use a Character Vector to Specify Callback Functions

You can specify the callback function as a character vector. For example, this code specifies the
callback function mycallback as the value of the start event callback property StartFcn for the
group object grp.

grp.StartFcn = 'mycallback"’;

In this case, the callback is evaluated in the MATLAB workspace.

9-13

9 Using Events and Callbacks

Use a Cell Array to Specify Callback Functions
You can specify the callback function as a character vector inside a cell array.

For example, this code specifies the callback function mycallback as the value of the start event
callback property StartFcn for the group object grp.

grp.StartFcn = {'mycallback'};
To specify additional parameters, include them as additional elements in the cell array.

time = datestr(now,0);
grp.StartFcn = {'mycallback',time};

The first two arguments passed to the callback function are still the OPC Toolbox object (obj) and the
event structure (event). Additional arguments follow these two arguments.

Use Function Handles to Specify Callback Functions
You can specify the callback function as a function handle.

For example, this code specifies the callback function mycallback as the value of the start event
callback property StartFcn for the group object grp.

grp.StartFcn = @mycallback;

To specify additional parameters, include the function handle and the parameters as elements in the
cell array.

time = datestr(now,0);
grp.StartFcn = {@mycallback, time};

If you are executing a local callback function from within a file, you must specify the callback as a
function handle.

Specify a Toolbox Function as a Callback

In addition to specifying callback functions of your own creation, you can also specify toolbox
functions as callbacks. For example, this code sets the value of the stop event callback to the start
function.

grp.StopFcn = @start;
Disable Callbacks

If an error occurs in the execution of the callback function, the toolbox disables the callback and
displays a message similar to the following.

start(grp)

??? Error using ==> myrecords cb
Too many input arguments.

Warning: The RecordsAcquiredFcn callback is being disabled.

To enable a callback that has been disabled, set the value of the property associated with the
callback.

9-14

Create and Execute Callback Functions

View Recently Logged Data

This example configures an OPC Toolbox object hierarchy and sets the records acquired event
callback function property to the display opcdata function, created in “Write a Callback Function”
on page 9-12.

When run, the example displays the last 60 records of acquired data every time 5 records have been
acquired. Repeat values are highlighted with magenta circles, and bad values are highlighted with
red circles.

Step 1: Create the OPC Toolbox Object Hierarchy

This example creates a hierarchy of OPC Toolbox objects for the Matrikon Simulation Server. To run
this example on your system, you must have the Matrikon Simulation Server installed. Alternatively,
you can replace the values used in the creation of the objects with values for a server you can access.

da = opcda('localhost', '"Matrikon.OPC.Simulation.1");
connect(da)

grp = addgroup(da, 'CallbackTest');

itml = additem(grp, 'Triangle Waves.Real8"');

itm2 additem(grp, 'Saw-toothed Waves.UInt2');

Step 2: Configure Property Values

This example sets the UpdateRate value to 0.2 seconds, and the RecordsToAcquire property to
200. The example also specifies as the value of the RecordsAcquiredFcn callback the event
callback function display opcdata, created in “Write a Callback Function” on page 9-12. The
object will execute the RecordsAcquiredFcn every 5 records, as specified by the value of the
RecordsAcquiredFcnCount property.

grp.UpdateRate = 0.2;
grp.RecordsToAcquire = 200;
grp.RecordsAcquiredFcnCount = 5;
grp.RecordsAcquiredFcn = @display opcdata;

Step 3: Acquire Data

Start the dagroup object. Every time 5 records are acquired, the object executes the
display opcdata callback function. This callback function displays the most recently acquired
records logged to the memory buffer.

start(grp)
wait(grp)

Step 4: Clean Up

Always remove toolbox objects from memory, and the variables that reference them, when you no
longer need them. Deleting the opcda client object also deletes the group and item objects.

disconnect(da)

delete(da)
clear da grp itml itm2

9-15

Using the OPC Toolbox Block Library

» “Block Library Overview” on page 10-2
* “Read and Write Data from a Model” on page 10-3
* “Use the OPC Client Manager” on page 10-11

10 Using the OPC Toolbox Block Library

Block Library Overview

10-2

OPC Toolbox software includes a Simulink interface called the OPC Toolbox block library. This library
is a tool for sending data from your Simulink model to an OPC server, or querying an OPC server to
receive live data into your model. You use blocks from the OPC Toolbox block library with blocks from
other Simulink libraries to create models capable of sophisticated OPC server communications.

The OPC Toolbox block library requires Simulink, a tool for simulating dynamic systems. Simulink is a
model definition environment. Use Simulink blocks to create a block diagram that represents the
computations of your system or application. Simulink is also a model simulation environment in which
you can see how your system behaves.

The best way to learn about the OPC Toolbox block library is to observe an example, such as the one
provided in “Read and Write Data from a Model” on page 10-3.

Read and Write Data from a Model

Read and Write Data from a Model

In this section...

“Example Overview” on page 10-3

“Step 1: Create New Model in Simulink Editor” on page 10-3
“Step 2: Open the OPC Toolbox Block Library” on page 10-3
“Step 3: Drag OPC Toolbox Blocks into the Editor” on page 10-4
“Step 4: Drag Other Blocks to Complete the Model” on page 10-4
“Step 5: Configure OPC Servers for the Model” on page 10-5
“Step 6: Specify the Block Parameter Values” on page 10-7

“Step 7: Connect the Blocks” on page 10-9

“Step 8: Run the Simulation” on page 10-10

Example Overview

This section provides a step-by-step example to illustrate how to use the OPC Toolbox block library.
The example builds a simple model using the blocks in the OPC Toolbox block library with blocks
from other Simulink libraries.

This example writes a sine wave to the Matrikon OPC Simulation Server, and reads the data back
from the same server. You use the OPC Write block to send data to the OPC server, and the OPC Read
block to read that same data back into your model.

Note To run the code in the following examples, you must have the Matrikon OPC Simulation Server
available on your local machine. For information on installing this, see “Install an OPC DA or HDA
Simulation Server for OPC Classic Examples” on page 1-14. The code used in this example requires
only minor changes to work with other servers.

Step 1: Create New Model in Simulink Editor
1 To start Simulink and create a new model, enter the following at the MATLAB command prompt:
simulink

In the Simulink start page dialog, click Blank Model, and then Create Model. An empty, Editor
window opens.

2 In the Editor, click File > Save As to assign a name to your new model.

Step 2: Open the OPC Toolbox Block Library

1 In the model Editor window, click Library Browser.

2 The Simulink Library Browser opens. Its left pane contains a tree of available block libraries in
alphabetical order. Click the OPC Toolbox node.

10-3

10 Using the OPC Toolbox Block Library

=Ioix

OPC Toolbox

- Simulink

H- Computer Vision System Toolbox
t- DSP System Toolbox

H- DSP System Toolbox HOL Support
- Embedded Coder il
+|- HDL Coder OPC Configuration OPC Quality Parts
- Image Acquisition Toolbox

- Control Toolbox vp

Mgt

Moo . ;
d

Rl Bpal

OPC Read Y OPC Writ
I_ IDwL’liul op |E|-:w:d?
[#- Simulink Extras
- Simulink Verification and Validation OPC Read OPC Write
- Stateflow

[#- Viehicle Network Toolbox
[#- Vision HOL Toolbox
- Recently Used Blocks

4

Alternatively, you can open the OPC Toolbox block library by typing the following command at the
MATLAB command prompt:

opclib

Step 3: Drag OPC Toolbox Blocks into the Editor
The OPC Toolbox block library contains four blocks

* OPC Configuration
* OPC Quality Parts
* OPC Read

* OPC Write

You can use these blocks to configure and manage connections to servers, to send and receive live
data between your OPC server and your simulation, and to analyze OPC quality.

To use the blocks in a model, select each block in the library and drag the block into the Simulink
Editor. For this example, you need one instance each of the OPC Configuration, OPC Write, and OPC
Read block in your model.

OFC Config
Real-Time

OFC Configus stion

vp
OFC Write OFC Read o
{Disabled) (Dissbled) ap

TP
OFC Write OFC Read

10-4

Note Block names are not shown by default in the model. To display the hidden block names while
working in the model, select Display and clear the Hide Automatic Names check box.

Step 4: Drag Other Blocks to Complete the Model

Your model requires three more blocks. One block provides the data sent to the server; the other two
blocks display the data received from the server.

Read and Write Data from a Model

To send a sine wave to the server, you can use the Sine Wave block. To access the Sine Wave block,
expand the Simulink node in the browser tree, and click the Sources library entry. From the blocks
displayed in the right pane, drag the Sine Wave block into the Simulink Editor and place it to the left
of the OPC Write block.

C Confi
eal-Time
‘OPC Configurstion

N OPC Write OPC Read
(Disabled) {Disabled)

OPC Write ‘OPC Read

- 0 <

You can use the Scope block to show the value received from the server, and a Display block to view
the quality of the item. (You will remove the time stamp output port in the next step.) To access the
Scope block, click the Sinks library entry in the expanded Simulink node in the browser tree. From
the blocks displayed in the right pane, drag the Scope block into the Simulink Editor and place it
above and to the right of the OPC Read block. Also drag a Display block into the Simulink Editor and
place it below the Scope block.

OPC Write OPC Read
(Disatled) (Disabled)

- D =

Sine Wave

\\ \
DPCmelgu:lm)E \
cope
=]

OPC Wrie OPC Read Display

Step 5: Configure OPC Servers for the Model

To communicate with OPC servers from Simulink, you first need to configure those servers in the
model. The OPC Configuration block manages and configures OPC servers for a Simulink model. Each
OPC Read or OPC Write block uses one server from the configured servers, and defines the items to
read from or write to.

1 Double-click the OPC Configuration block to open its parameters dialog.

10-5

10 Using the OPC Toolbox Block Library

) Block Parameters: OPC Configuration =0 x]

— OPC Configuration

Configure pseudo real-time control options, OPC clients to use in the
model, and behavior in response to OPC errors and events,

Only one of these blocks can be active in a Simulink model, Additional
OPC Configuration blocks are disabled.

Clients are configured using Configure OPC Clients...

Configure OPC Clients, .. |

— Errar control

Items not available on server: IErmr d
Readfwrite errors: IWarn d
Server unavailable: IError d
Pseudo real-time violation: IWarn d

— Pseudo real-time simulation

¥ Enable pseudo real-time simulation

Speedup: |1 times

Cukput port:

[~ show pseuda real-time latency port ‘

[o]'4 | Cancel | Help | Apply |

2 Click Configure OPC Clients to open the OPC Client Manager.

-} OPC Client Manager (DPETutoriaIExampIe:: = |EI|1|

— OPC client manager

Define and configure OPC clients For use throughout the model,

MOTE: Any changes in this dialog are applied immediately.

— OPC Clients
=Mo clignts defined= ;I
e
Add... Delete Edit... | Cannech | Disconmest |

Help | Close |

3 Click Add to open the OPC Server Properties dialog. Specify the ID of the server as
'Matrikon.OPC.Simulation.1"' (or click Select and choose the server from the list of
available OPC servers).

) OPC Server Properties =10]x]

Hast: 'ocalhost

Server: ﬁatrikon.OPC.SimuIation. 1 Select: |
Timeout: IID seconds
[8]4 | Cancel |

4 Click OK to add the OPC server to the OPC Client Manager.

10-6

Read and Write Data from a Model

Step 6: Specify the Block Parameter Values

-} OPC Client Manager (OPCTutorialExample = |EI|1|

— OPC client manager

Define and configure OPC clients For use throughout the model,

MOTE: Any changes in this dialog are applied immediately.

— OPC Clients

localhostiMatrikan, OPC. Simulation, 1 [Timeout = 10, Connected]

[
Delete Edit... | Cannech | Disconneck |
Help | Close |

The Matrikon OPC Simulation Server is now available throughout the model for reading and

writing.

Your model will use default values for all other settings in the OPC Configuration block. Click OK

in the OPC Configuration dialog to close that dialog.

You set parameters for the blocks in your model by double-clicking on each block.

1

2
3

Double-click the OPC Write block to open its parameters dialog. The Matrikon server is
automatically selected for you as the OPC client to use in this block. You need to specify the items

for writing.

) Block Properties: OPC Write =0 x]
— CPC Wrik
‘Write data to an OPC server, Writes can be synchronous or
asynchronous,
‘fou must specify as many items as the width of the input port,
Each element of the input vector is written ko the corresponding
item on the server,
Import From Workspace. .. |
— Parameter
Client: Ilocalhost,l’Matrikon.OPC.SimuIation.1 d
Configure OPC Clients, .. |
ItemID:
=Ho items defined ;I
e
IMove up | IMove down Add Items,., | i DEEE"™ |
Write mode: ISynchronous j
Sample time: lj
OF | Cancel | Help | Apply |

Click Add Items to display a name space browser for the Matrikon OPC Simulation Server.

Expand the Simulation Items node in the name space, then expand the Bucket Brigade node.
Select the Real8 node and click >> to add that item to the selected items list.

10-7

10 Using the OPC Toolbox Block Library

10-8

) select Items

Available server items:

a lncalhostatrikon OPC Simulation = |
E- Simulation tterms

=& Bucket Brigads

------ & ArrayOiReals

------ & ArrayOiString

------ ‘& Boolean

Enter Item ID{s):

&l belaw = |

Selected server items:

Bucket Brigade Reald

[8]4 | Cancel

=10l x|

;I
|

Click OK to add the item Bucket Brigade.Real8 to the OPC Write block’s ItemIDs list.
In the OPC Write parameters dialog, click OK to accept the changes and close the dialog.

Double-click the OPC Read block to open its dialog. Add the same item to the OPC Read block,
repeating steps 2-5 that you followed for the OPC Write block in this section.

Set the read mode to 'Synchronous (device)' and the sample time for the block to 0. 2.

Also uncheck the 'Show timestamp port' option. This step removes the time stamp output
port from the OPC Read block.

Read and Write Data from a Model

) Block Properties: OPC Read =0 x]

— OPC Read block
Read data from an OPC server, Reads can be synchronous {from
the cache or device) or asynchronous (from the device),

The output ports are vectors the same size as the number of items
specified in the block, Value is output as a vector of the specified
data bype. The optional Quality port is a UINT16 vectar, The
optional Timestamp port is & double vector,

Import From Workspace. .. |

— Parameter
Client: Ilocalhost,l’Matrikon.OPC.SimuIation.1 d
Configure OPC Clients, .. |

Item IO

Bucket Brigade Reald

=

[Mave up | IMave down | Add Items. .. Delete |
Read mode: ISynchronous {device) d
Sample time: P.Z
Walue port data bype: Idouble d
¥ show quality part
[~ Show timestamp port as:

{+ Seconds since stark

= Serial date number

OF | Cancel | Help | Apply |

Step 7: Connect the Blocks

Make a connection between the Sine Wave block and the OPC Write block. When you move the cursor
near the output port of the Sine Wave block, the cursor becomes crosshairs. Click the Sine Wave
output port and hold the mouse button; drag to the input port of the OPC Write block, and release the
button.

In the same way, make a connection between the first output port of the OPC Read block (labeled V)
and the input port of the Scope block. Then connect the other output port of the OPC Read block
(labeled Q) to the input port of the Display block.

Note that the OPC Write and OPC Read blocks do not directly connect together within the model. The
only communication between them is through an item on the server, which you defined in “Step 5:
Configure OPC Servers for the Model” on page 10-5.

‘OPC Configur stion
v _l_'EI
OPC Writs OPC Read ob Scaps
(Disabled) (Disabled) =
Sine Wave T—*
OPC Write: OFC Read Diplay

10-9

10 Using the OPC Toolbox Block Library

10-10

Step 8: Run the Simulation

Before you run the simulation, double-click the Scope block to open the scope view.

-ioix
R EERNEEEIENERE

To run the simulation, click Run in the Simulink Editor toolstrip.

The model writes a sine wave to the OPC server, reads back from the server, and displays the wave in
the scope trace. In addition, the quality value is set to 192, which indicates a good quality (see “OPC
Quality” on page A-2).

While the simulation is running, the status bar at the bottom of the model window updates the
progress of the simulation, and the sine wave is displayed in the Scope window.

-ioix
EHIEEEEEIE R

Use the OPC Client Manager

Use the OPC Client Manager

In this section...

“Introduction to the OPC Client Manager” on page 10-11

“Add Clients to the OPC Client Manager” on page 10-11
“Remove Clients from the OPC Client Manager” on page 10-12
“Modify the Server Timeout Value for a Client” on page 10-12

“Control Client/Server Connections” on page 10-12

Introduction to the OPC Client Manager

The OPC Client Manager displays and manages all clients for a Simulink model. Using the OPC Client
Manager, you associate one or more clients with a particular model. Each time you use an OPC Read
or OPC Write block, you choose the client for that block from the list of configured clients. By
defining a single list of clients in the OPC Client Manager, you enable a Simulink model to reuse
clients among OPC Read and OPC Write blocks.

You access the OPC Client Manager from the parameters dialog of the OPC Configuration, OPC Read,
or OPC Write block, by clicking Configure OPC Clients. A dialog similar to the following figure
appears.

) OPC Client Manager (untitled} =101 %]

— OPC client manager
Define and configure OPC clients For use throughout the model,

MOTE: Any changes in this dialog are applied immediately.

— OPC Clients

localhostiServer, 1 [Timeout = 10, Disconnected]

[
Delete Edit... | Conneck | Disconnectl
Help | Close |

Add Clients to the OPC Client Manager

You add clients to the OPC Client Manager by clicking Add. The following dialog box appears.

) OPC Server Properties (=]]

Hast: 'ocalhost

Server: I Select... |
Timeout: IID seconds
[8]4 | Cancel |

Specify the host in the Host edit box. You can then type the Server ID of the required server, or use
Select to query the host for a list of servers.

Specify the timeout (in seconds) to use when communicating with the server.

10-11

10 Using the OPC Toolbox Block Library

10-12

When you click OK, the client is added to the OPC Clients list in the OPC Client Manager. You can
now use that client in one or more OPC Read or OPC Write blocks within that model.

Remove Clients from the OPC Client Manager

To remove a client from the OPC Client Manager, select the client in the OPC Clients list and click
Delete. A confirmation dialog appears. Click Delete to remove the client from the OPC Client
Manager.

If you attempt to remove a client that is referenced by one or more OPC Toolbox library blocks, you
see the following dialog.

<} OPC Client Managet: Client in use i] 5
Thiz client iz being used by ather OPC blocks. Y'ou cannaot

delete this client without deleting the other blocks or
changing thoze blocks to use anather client.
Do you want ta delete the blocks that uze thiz client,

replace the client in those blocks with another, or
cancel the delete operation’?

Delete | Fleplacel

Click Delete to remove all blocks that reference the client you want to delete.

Click Replace to replace the referenced client with another client in the OPC Client list (this choice
is available only if another client is available), and select the replacement client from the resulting
list. Click Cancel to cancel the delete operation.

Modify the Server Timeout Value for a Client

Click Edit to modify the timeout property of the selected client. The timeout value is specified in
seconds, and applies to all server operations (connect, disconnect, read, write).

Control Client/Server Connections

OPC Toolbox software automatically attempts to connect a client configured in the OPC Client
Manager to its server. This enables you to browse the server name space for items, and speeds up the
initialization process of simulating a model.

You can control the client’s connection status by highlighting a client in the OPC Client list and
clicking Connect or Disconnect.

The OPC Toolbox block library automatically reconnects any disconnected client to its server when
you run a simulation.

Properties

11 Properties

11-2

AccessRights

Inherent nature of access to item

Description

AccessRights represents the server’s ability to access a single OPC data item. The property value
can be 'read’, 'write', or 'read/write'. If AccessRightsis 'read’', you can read the server
item's value. If AccessRights is 'write’, you can write values to the server item. If
AccessRightsis 'read/write’, you can read and change the server item's value. If you attempt a
read or write operation on an item that does not have the required access rights, the server may

return an error.

Characteristics

Access
Applies to
Data type
Values

See Also

Functions

Read-only

daitem

character vector

['read' | 'read/write' | 'write']

The value is set by the server when an item is created.

read, readasync, refresh, write, writeasync

Properties

Subscription

Active

Active

Group or item activation state

Description

Activecanbe 'on' or 'off'.If Activeis 'on', the OPC server will return data for the group or
item when requested by the read function or when the corresponding data items change

(subscriptions). If Activeis 'off', the OPC server will not return information about the group or
item.

By default, Active is set to 'on' when you create a dagroup or daitem object. Set Active to
"off' when you are temporarily not interested in that daitem or dagroup object's values. You
configure Active for both dagroup and daitem objects. Changing the state of the group does not
change the state of the items.

The activation state of a dagroup or daitem object affects reads and subscriptions, and depends on
whether the data is obtained from the cache or from the device. The active state of a group or item
affects operations as follows.

Operation Source Active State

read Cache Both group and items must be active. Inactive items in
active groups, and all items in inactive groups, return bad
quality.

read Device Active is ignored.

write N/A Active is ignored.

Subscription N/A Both group and items must be active. Inactive items in
active groups, and all items in inactive groups, return bad
quality.

readasync N/A Active is ignored.

A transition from 'off' to 'on' results in a change in quality, and causes a subscription callback for
the item or items affected. Changing the Active state from 'on' to 'off' will cause a change in
quality but will not cause a callback since by definition callbacks do not occur for inactive items.

You enable subscription callbacks with the Subscription property. Use the DataChangeFcn property to
specify a callback function file to execute when a data change event occurs.

Characteristics

Access Read/write

Applies to dagroup, daitem
Data type character vector
Values ['off'" | {'on'} 1]

11-3

11 Properties

11-4

See Also

Functions

read, readasync, refresh
Properties

DataChangeFcn, Subscription

CancelAsyncFcn

CancelAsyncFcn

Callback function file to execute when asynchronous operation is canceled

Description

You configure CancelAsyncFcn to execute a callback function file when a cancel async event occurs.
A cancel async event occurs after an asynchronous read or write operation is canceled.

When a cancel async event occurs, the function specified in CancelAsyncFcn is passed two
parameters: Obj and EventInfo. Obj is the object associated with the event, and EventInfo is an
event structure containing the fields Type and Data. The Type field is set to ' CancelAsync'. The
Data field contains a structure with the fields shown below.

Field Name Description

LocalEventTime The time, as a MATLAB date vector, that the event occurred.

TransID The transaction ID of the canceled read or write asynchronous
operation.

GroupName The group name.

Cancel async event information is stored in the EventLog property.

Characteristics

Access Read/write

Applies to dagroup

Data type character vector, function handle, or cell array
Values The default value is @opccallback.

See Also

Functions

cancelasync, opccallback, readasync, writeasync
Properties

EventLog

11-5

11 Properties

11-6

CanonicalDataType

Server's data type for item

Description

CanonicalDataType indicates the data type of the item as stored on the OPC server. The MATLAB
supported data types are as for the DataType property.

You can specify that the item's value is stored in the daitem object using a data type that differs from
the canonical data type, by setting the DataType property of the item to a value different from
CanonicalDataType. Translation between the CanonicalDataType and the DataType is
automatic.

Refer to the DataType property reference for a listing of the COM Variant data types and their
equivalent MATLAB data types.

Characteristics

Access Read-only

Applies to daitem

Data type character vector

Values The default value is determined when the item is created.

See Also
Functions
additem
Properties

DataType

DataChangeFcn

DataChangeFcn

Callback function file to execute when data change event occurs

Description

You configure DataChangeFcn to execute a callback function file when a data change event occurs.
A data change event occurs for subscribed active items within an active group when the value or
quality of the item has changed. The events will happen no faster than the time specified for the
UpdateRate property of the group. The DeadbandPercent property is used to determine what
percentage change in the value or quality initiates the callback. A data change event is only
generated when both the Active and Subscription properties are '‘on".

When a data change event occurs, the function specified in DataChangeFcn is passed two
parameters: Obj and EventInfo. Obj is the object associated with the event, and EventInfo is an
event structure containing the fields Type and Data. The Type field is set to 'DataChange'. The
Data field contains a structure with the fields defined below.

Field Name Description

LocalEventTime The time, as a MATLAB date vector, that the event occurred

TransID 0, or the Refresh transaction ID if the data change event was generated
by refresh

GroupName The group name

Items A structure containing information about each item whose value or
quality updated

The Items structure contains the fields defined below.

Field Name Description

ItemID The item name

Value The data value

TimeStamp The time, as a MATLAB date vector, that the server's cache was updated

Data change event information is not stored in the EventLog property

Characteristics

Access Read/write

Applies to dagroup

Data type character vector, function handle, or cell array
Values The default value is an empty matrix ([]).

11-7

11 Properties

See Also

Functions
opccallback, refresh
Properties

Active, DeadbandPercent, Subscription, UpdateRate

11-8

DataType

DataType

Client item's data type

Description

DataType indicates the data type of the item as stored in the daitem object in the MATLAB
workspace. You can specify the data type when the item is created using the additem function. If you
do not specify a data type, or if the requested data type is rejected by the server, the canonical
(native) data type is used. If the client associated with the item is not connected, the data type is set
to 'unknown' until the client is connected.

The OPC server uses this data type to store the item value. The CanonicalDataType property of a
daitem object provides information on the canonical data type of that item on the server.

OPC communication uses COM Variant data types to send information between the server and client.
These are automatically translated to an equivalent MATLAB data type for the COM Variant types
defined below. Any data type not included in this list is returned as 'unknown"'.

OPC Toolbox Data Type |COM Data Type MATLAB Data Type
double VT R8 double

char VT BSTR char

single VT R4 single

uint8 VT UIl uint8

uintl6 VT UI2 uintl6

uint32 VT UI4 uint32

uint64 VT UI8 uint64

int8 VT I1 int8

intl6 VT 12 intl6

int32 VT 14 int32

int64 VT I8 int64
currency VT CY double

date VT DATE double
logical VT BOOL logical
double VT _EMPTY Empty array ([])
Characteristics

Access Read-only while logging

Applies to daitem

Data type character vector

11-9

11 Properties

11-10

Values

See Also
Functions
additem
Properties

CanonicalDataType

[{'unknown'} |

‘uintl6’
"int32'

'double' | 'char'
'uint32' | 'uint64’
'int64' | 'currency'

| 'single' | 'uint8'
'int8' | 'intl6' |
'date' | 'logical'l

DeadbandPercent

DeadbandPercent

Percentage change in item value that causes subscription callback

Description

You configure DeadbandPercent to a value between 0 and 100. The default value is 0, which
specifies that any value change will update the OPC server's cache. A non-zero value results in the
cache value being updated only if the difference between the cached value and the current value of
the item exceeds

DeadbandPercent * (High EU-Low EU) /100

The DeadbandPercent property only affects items that have an analogue data type and 'High EU'
and 'Low EU' properties defined (Property IDs 102 and 103 respectively). You can query data types
and item properties using serveritemprops.

Note OPC servers may not implement the DeadbandPercent property behavior, even for values that
have High EU and Low EU properties defined. For servers that do not support DeadbandPercent,
an error will be generated if you attempt to set the DeadbandPercent property to a value other than
0.

DeadbandPercent is applied group wide for all analog daitem objects, and is used to prevent noisy
signals from updating the client unnecessarily.

Characteristics

Access Read/write

Applies to dagroup

Data type double

Values Any value from 0 to 100, inclusive. The default value is 0.

See Also
Functions
serveritemprops

Properties

Active, Subscription, UpdateRate

11-11

11 Properties

11-12

ErrorFcn

Callback function file to execute when error event occurs

Description

You configure ErrorFcn to execute a callback function file when an error event occurs. An error
event is generated when an asynchronous transaction fails. For example, an asynchronous read on
items that cannot be read generates an error event. An error event is not generated for configuration
errors such as setting an invalid property value, nor for synchronous read and write operations.

When an Error event occurs, the function specified in ErrorFcn is passed two parameters: Obj and
EventInfo. Obj is the object associated with the event, and EventInfo is an event structure
containing the fields Type and Data. The Type field is set to 'Error'. The Data field contains a
structure with the following fields:

Field Name Description

LocalEventTime The local time (as a date vector) the event occurred.

TransID The transaction ID associated with the event.

GroupName The group name.

Items A structure containing information on each item that generated an error
during that transaction.

The Items structure array contains the following fields:

Field Name Description
ItemID The item name.
Error The error message.

The default value for ErrorFcn is @opccallback.

Note that error event information is also stored in the EventLog property.

Characteristics

Access Read/write

Applies to opcda

Data type character vector, function handle, or cell array
Values @opccallback is the default callback function.
See Also

Functions

opccallback, showopcevents

ErrorFcn

Properties

EventLog, Timeout

11-13

11 Properties

11-14

EventLog

Event information log

Description

EventLog contains a structure array that stores information related to OPC Toolbox software events.
Every element in the structure array corresponds to an event.

Each element in the EventlLog structure contains the fields Type and Data. The Type value can be
'WriteAsync', 'ReadAsync', 'CancelAsync', 'Shutdown', 'Start', 'Stop', or 'Error"'.

Data stores event-specific information as a structure. For information on the fields contained in
Data, refer to the associated callback property reference pages. For example, to find information on
the fields contained in Data for a Start event, refer to the StartFcn property.

You specify the maximum number of events to store with the EventLogMax property.

Note that some events are not stored in the EventLog. If you want to store these events, you must
specify a callback for that event.

You can execute a callback function when an event occurs by specifying a function for the associated
callback property. For example, to execute a callback when a read async event is generated, you use
the ReadAsyncFcn property.

If the event log is full (the number of events in the log equals the value of the EventLogMax property)
and a new event is received, the oldest event is removed to make space for the new event. You clear
the event log using the cleareventlog function.

Characteristics

Access Read-only

Applies to opcda

Data type Structure array

Values The default value is an empty matrix ([]).
Examples

The following example creates a client and configures a group with two items. A 30-second logging
task is run, and after 10 seconds the item values are read. When the logging task stops, the event log
is retrieved and examined.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);

grp = addgroup(da, 'EvtLogExample');

itml additem(grp, 'Random.Real8');

itm2 additem(grp, 'Triangle Waves.UIntl');
set(grp, 'UpdateRate', 1, 'RecordsToAcquire', 30);
start(grp);

pause(10);

EventLog

tid = readasync(grp);
wait(grp);

el = get(da, 'EventLog')

el = get(da, 'EventLog')

el =

1x3 struct array with fields:
Type

Data

Now examine the first event, which is the start event.

el(1)

ans =
Type: 'Start'
Data: [1x1 struct]

The Data field contains the following information.

el(1).Data
ans =
LocalEventTime: [2004 1 13 16 16 25.1790]
GroupName: 'EvtLogExample'
RecordsAcquired: 0

The second event is a ReadAsync event. Examine the Data structure and the first element of the
Items structure.

el(2)

ans =
Type: 'ReadAsync'
Data: [1x1 struct]

el(2).Data
ans =
LocalEventTime: [2004 1 13 16 16 35.2100]
TransID: 2
GroupName: 'EvtLogExample'
Items: [2x1 struct]

el(2).Data.Items(1)

ans =
ItemID: 'Random.Real8'
Value: 2.4619e+003
Quality: 'Good: Non-specific'
TimeStamp: [2004 1 13 16 16 35.1870]
See Also
Functions

cleareventlog, start
Properties

CancelAsyncFcn, DataChangeFcn, EventLogMax, ErrorFcn, ReadAsyncFcn, StartFcn, StopFcn,
WriteAsyncFcn

11-15

11 Properties

11-16

EventLogMax

Maximum number of events to store in event log

Description

If the event log is full (the number of events in the log equals the value of the EventLogMax
property) and a new event is received, the oldest event is removed to make space for the new event.
You clear the event log using the cleareventlog function.

By default, EventLogMax is set to 1000. To continually store events, specify a value of Inf. To store
no events, specify a value of 0. If EventLogMax is reduced to a value less than the number of existing
events in the event log, the oldest events are removed until the number of events is equal to
EventLogMax.

Characteristics

Access Read/write

Applies to opcda

Data type double

Values Any integer in the range [0 Inf]. The default value is 1000.

See Also
Functions
cleareventlog
Properties

EventLog

Group

Group

Data Access Group objects contained by client

Description

Group is a vector of dagroup objects contained by the opcda object. Group is initially an empty
vector. The size of Group increases as you add groups with the addgroup function, and decreases as
you remove groups with the delete function.

Characteristics

Access Read-only

Applies to opcda

Data type dagroup array

Values The default value is an empty array ([1).
See Also

Functions

addgroup, delete

11-17

11 Properties

GroupType

Public status of dagroup object

Description

GroupType indicates whether a group is private or public. A private group is local to the opcda
client, and other clients must create their own private groups. A public group is available from the
server for any other OPC client on the network.

Characteristics

Access Read-only

Applies to dagroup

Data type character vector

Values [{'private'} | 'public']
See Also

Functions

addgroup

11-18

Host

Host

DNS name or IP address of server

Description

Host is the name or IP address of the machine hosting the OPC server. If you specify the host using
an IP address, no name resolution is performed on that address.

Characteristics

Access Read-only while connected

Applies to opcda

Data type character vector

Values The value is configured when the object is created.

See Also
Functions
opcda

Properties

ServerID

11-19

11 Properties

11-20

Item

Data Access Item objects contained by group

Description

Itemis a vector of daitem objects contained by the dagroup object. Item is initially an empty
vector. The size of Item increases as you add items with the additem function, and decreases as you
remove items with the delete function.

Characteristics

Access Read-only

Applies to dagroup

Data type daitem

Values The default value is an empty matrix ([]).
Example

This example creates a fictitious client, adds a group and two items.
da = opcda('localhost', 'Dummy.Server');

grp = addgroup(da, 'MyGroup');

itml = additem(grp, 'Item.Name.l');
itm2 = additem(grp, 'Item.Name.2');
allItems = grp.Item

If one of the items is deleted, the Item property is updated to reflect this.

delete(itm2);
newItems = grp.Item

See Also
Functions

additem, delete

ltemID

ItemID

Fully qualified ID on OPC server

Description

ItemID is the fully qualified ID of the data item on the OPC server. The server uses the ItemID to
return the appropriate data from the server's cache, or to read and send data to a specific device or
location.

You obtain valid ItemID values for a particular server by querying that server's name space using the
getnamespace or serveritems functions.

Characteristics

Access Read-only while connected

Applies to daitem

Data type character vector

Values The default value is set during creation.
See Also

Functions

additem, getnamespace, serveritems

11-21

11 Properties

11-22

LogFileName

Name of disk file to which logged data is written

Description

When you start a logging operation using the start function, and the LoggingMode property is set to
'disk' or 'disk&memory', then DataChange events (records) are logged to a disk file with the
name specified by LogFileName. You may specify any value for LogFileName as long as it conforms
to the operating system file naming conventions. If no extension is specified as part of LogFileName,
then .olf is used.

If a log file with the same name as LogFileName already exists when logging is started, the
LogToDiskMode property is used to determine whether to overwrite the existing file, append records
to that file, or create an indexed file based on LogFileName.

The log file is an ASCII file in comma-separated variable format, arranged as follows:
DataChange: LocalEventTime

ItemID1, Valuel, Qualityl, TimeStampl

ItemID2, Value2, Quality2, TimeStamp2

ItemIDN, ValueN, QualityN, TimeStampN

DataChange: <LocalEventTime>

ItemID1, Valuel, Qualityl, TimeStampl

ItemID2, Value2, Quality2, TimeStamp2

ItemIDN, ValueN, QualityN, TimeStampN

Characteristics

Access Read-only while logging

Applies to dagroup

Data type character vector

Values The default value is 'opcdatalog.olf'.

See Also
Functions
start

Properties

LoggingMode, LogToDiskMode

Logging

Logging

Status of data logging

Description

Logging is automatically set to 'on' when you issue a start command. Logging is automatically
set to 'off' when you issue a stop command, or when the requested number of records is logged.
You specify the number of records to log with the RecordsToAcquire property.

When Logging is 'on', each DataChange event (a record) is stored to disk or to memory (the
buffer) as defined by the LoggingMode property.

Characteristics

Access Read-only

Applies to dagroup

Data type character vector
Values [{"off'} | 'on']
See Also

Functions

start, stop, wait
Properties

LoggingMode, RecordsToAcquire

11-23

11 Properties

11-24

LoggingMode

Specify destination for logged data

Description

LoggingMode can be set to 'disk’, 'memory’, or 'disk&memory'. If LoggingMode is set to
'disk', DataChange events (records) are stored to a disk file as specified by LogFileName. If
LoggingMode is set to 'memory ', records are stored to memory (the buffer). If LoggingMode is set
to 'disk&memory ', records are stored to memory and to a disk file. LoggingMode defaults to
"memory"’.

The disk file or memory buffer contains data logged from the time you issue the start command,
until the time you issue a stop command or the number of records specified by the
RecordsToAcquire property has been logged. Each DataChange event constitutes one record,
containing one or more items. Only items that change value or quality are included in a DataChange
event. The logged data includes the ItemID, Value, TimeStamp, and Quality for each item that
changed.

Note that when you issue a refresh command while the toolbox is logging, the results of that
operation are included in the log, since a refresh forces a DataChange event on the OPC server.

You extract data from memory with the getdata function. You can return the data stored in a log file
to the MATLAB workspace with the opcread function.

Characteristics

Access Read-only while logging

Applies to dagroup

Data type character vector

Values ['disk' | 'disk&memory' | {'memory'} 1]
See Also

Functions

getdata, opcread, refresh, start, stop
Properties

LogFileName, RecordsToAcquire

LogToDiskMode

LogToDiskMode

Method of disk file handling for logged data

Description

LogToDiskMode can be set to "append’, 'overwrite' or 'index'. If LogToDiskMode is set to
"append’, then data for a logged session is added to any data that already exists in the log file when
logging is started using the start command. If LogToDiskMode is set to 'overwrite’, then the log
file is overwritten each time start is called. If LogToDiskMode is set to 'index", then a different
disk file is created each time start is called, according to the following rules:

The first log file name attempted is specified by the initial value of LogFileName.

2 Ifthe attempted file name exists, then a numeric identifier is added to the value of
LogFileName. For example, if LogFileName is initially specified as 'groupRlog.olf’, then
groupRlog.olf is the first attempted file, groupRlog@1.olf is the second file name, and so
on. If the LogFileName already contains numbers as the last characters in the file name, then
that number is incremented to create the new log file name. For example, if the LogFileName is
specified as 'groupLog003.o0lf', then the next file name would be 'groupLog004.olf".

3 The actual file name used is the first file name that does not exist. In this way, each consecutive
logging operation is written to a different file, and no previous data is lost.

Separate dagroup objects are logged to separate files. If two dagroup objects have the same value
for LogFileName, then attempting to log data from both objects simultaneously will result in the
second object failing during the start operation.

Characteristics

Access Read-only while logging

Applies to dagroup

Data type character vector

Values ['append' | {'index'} | 'overwrite']

See Also
Functions
start

Properties

LogFileName, Logging, LoggingMode

11-25

11 Properties

11-26

Name

Descriptive name for OPC Toolbox object

Description

The default object creation behavior is to automatically assign a name to all objects. For the opcda
object, Name follows the naming scheme 'Host/ServerID'. For the dagroup object, if a name is
not specified upon creation, the name returned by the OPC server is used, or a unique name is
automatically assigned to the group. Automatically assigned group names follow the naming scheme
"groupN' where N is an integer.

You can change the Name of an object at any time. The Name can be any character vector, and is used
for display and identification purposes only.

Characteristics

Access Read/write

Applies to opcda, dagroup

Data type character vector

Values The default value is defined at object creation time.
See Also

Functions

opcda, addgroup
Properties

Host, ItemID, ServerID

Parent

Parent

OPC Toolbox object that contains dagroup or daitem object

Description

For dagroup objects, Parent indicates the opcda object that contains the group. For daitem
objects, Parent indicates the dagroup object that contains the daitem object.

Characteristics

Access Read-only

Applies to dagroup, daitem

Data type Type of parent object

Values The value is defined at object creation time.
See Also

Properties

Group, Item

11-27

11 Properties

11-28

Quality

Quality of data value

Description

Quality indicates the quality of the daitem object’s Value property as a character vector. You can
use the Quality property to determine if a value is useful or not.

The Quality is made up of a major quality, a substatus, and an optional limit status, arranged as a
character vector in the format 'Major: Substatus: Limit status'. The limit status part is
omitted if the value is not limited. The major quality can be one of the following values:

Value Description

Bad The value is not useful for reasons indicated by the substatus.

Good The value is of good quality.

Uncertain The quality of the value is uncertain for reasons indicated by the
Substatus.

For a list of substatus and limit status values and their interpretations, consult “OPC Quality” on page
A-2,

Quality is updated when you perform a read operation using read or readasync, or when a
subscription callback occurs. Quality is also returned during a synchronous read operation.

Characteristics

Access Read-only

Applies to daitem

Data type character vector

Values The default value is 'Bad: Out of Service'.
See Also

Functions

read, readasync, refresh
Properties

QualityID, Subscription, TimeStamp, UpdateRate, Value

QualitylD

QualityID

Quality of data value as 16-bit integer

Description
QualityID is a numeric indication of the quality of the daitem object's data value.

QualityID is a number ranging from 0 to 65535, made up of four parts. The high 8 bits of the
QualityID represent the vendor-specific quality information. The low 8 bits are arranged as
QQSSSSLL, where QQ represents the major quality, SSSS represents the quality substatus, and LL
represents the limit status.

You use the opcqparts function to extract the four quality fields from the QualityID value.
Alternatively, you can use the bit-wise functions to extract the fields you are interested in. For
example, to extract the major quality, you can bit-wise AND the QualityID with 192 (the decimal
equivalent of binary 11000000) using the bitand function, and shift the result 6 bits to the right
using the bitshift function.

You use the opcqstr function to obtain the four quality fields from the QualityID value.
For more information, see “OPC Quality” on page A-2.

QualityID is updated when you perform a read operation using read or readasync, or when a
subscription callback occurs.

Characteristics

Access Read-only

Applies to daitem

Data type double

Values An integer from 0 to 65535. The default value is 28 (representing the
quality 'Bad: Out of Service').

See Also

Functions

bitand, bitshift, opcgparts, opcgstr, read, readasync, refresh
Properties

Quality, Value

11-29

11 Properties

11-30

ReadAsyncFcn

Callback function file to execute when asynchronous read completes

Description

You configure ReadAsyncFcn to execute a callback function file when an asynchronous read
operation completes. You execute an asynchronous read with the readasync function. A read async
event occurs immediately after the data is returned by the server to the MATLAB workspace.

When a read async event occurs, the function specified in ReadAsyncFcn is passed two parameters:
Obj and EventInfo. Obj is the object associated with the event, and EventInfo is an event
structure containing the fields Type and Data. The Type field is set to 'ReadAsync'. The Data field
contains a structure with the fields defined below.

Field Name Description

LocalEventTime The time, as a MATLAB date vector, that the event occurred.

TransID The transaction ID for the asynchronous read operation.

GroupName The group name.

Items A structure containing information about each item whose value or
quality updated.

The Items structure contains the fields defined below.

Field Name Description

ItemID The item name.

Value The data value.

TimeStamp The time, as a MATLAB date vector, that the server's cache was updated.

Read async event information is stored in the EventLog property.

Characteristics

Access Read/write

Applies to dagroup

Data type character vector, function handle, or cell array
Values The default value is @opccallback.

See Also

Functions

opccallback, readasync

ReadAsyncFcn

Properties

EventLog

11-31

11 Properties

RecordsAcquired

Number of records acquired

Description

RecordsAcquired is continuously updated to reflect the number of records acquired since the
start function was called. When you issue a start command, the group object resets the value of
RecordsAcquired to 0 and flushes the memory buffer.

To find out how many records are available in the buffer, use the RecordsAvailable property. You can
also configure the RecordsAcquiredFcn to generate an event each time a particular number of
records have been acquired.

Characteristics

Access Read-only

Applies to dagroup

Data type double

Values The default value is 0.

See Also
Functions
start

Properties

Logging, RecordsAcquiredFcn, RecordsAvailable

11-32

RecordsAcquiredFcn

RecordsAcquiredFcn

Callback function file to execute when RecordsAcquired event occurs

Description

You configure RecordsAcquiredFcn to execute a callback function file when a records acquired
event is generated. A records acquired event is generated each time the RecordsAcquired property
reaches a multiple of RecordsAcquiredFcnCount.

When a records acquired event occurs, the function specified in RecordsAcquiredFcn is passed two
parameters: Obj and EventInfo. Obj is the object associated with the event, and EventInfo is an
event structure containing the fields Type and Data. The Type field is set to 'RecordsAcquired"'.
The Data field contains a structure with the fields defined below.

Field Name Description

LocalEventTime The time, as a MATLAB date vector, that the event occurred

GroupName The group name

RecordsAcquired The number of records acquired in the current logging session at the
time the event occurred

Records acquired event information is not stored in the EventLog property.

Characteristics

Access Read/write

Applies to dagroup

Data type character vector, function handle, or cell array
Values The default value is an empty matrix ([]).

See Also
Functions
start

Properties

EventLog, RecordsAcquired, RecordsAcquiredFcnCount

11-33

11 Properties

RecordsAcquiredFcnCount

Number of records to acquire before RecordsAcquired event occurs

Description

A records acquired event is generated each time the number of records acquired reaches a multiple
of RecordsAcquiredFcnCount.

Characteristics

Access Read-only while logging

Applies to dagroup

Data type double

Values Any integer in the range [0 Inf]. The default value is 20.
See Also

Properties

RecordsAcquired, RecordsAcquiredFcn

11-34

RecordsAvailable

RecordsAvailable

Number of records available in OPC Toolbox engine

Description

RecordsAvailable indicates the number of records that are available in the OPC Toolbox software
engine. When you extract records from the engine with the getdata function, the
RecordsAvailable value reduces by the number of records extracted. RecordsAvailable is reset
to 0 and the toolbox engine is cleared when you issue a start command.

Use the RecordsAcquired property to find out how many records have been acquired since the start

command was issued.

Characteristics

Access
Applies to
Data type
Values

See Also
Functions

getdata, start

Properties

Read-only

dagroup

double

Any integer in the range [0 Inf]. The default value is 0.

RecordsAcquired, RecordsToAcquire

11-35

11 Properties

RecordsToAcquire

Number of records to acquire for logging session

Description

RecordsToAcquire specifies the number of records that must be acquired before the engine
automatically stops logging. When RecordsAcquired reaches RecordsToAcquire, the Logging
property is set to 'off', and no more records are logged.

To continuously log records, specify a value of Inf.

Characteristics

Access Read-only while logging

Applies to dagroup

Data type double

Values Any integer in the range [0 Inf]. The default value is 120.
See Also

Properties

Logging, RecordsAvailable

11-36

ScanRate

ScanRate

Fastest possible data update rate

Description

ScanRate describes the fastest possible rate at which a server can update an item. The default value
is 0, which indicates that the scan rate is not known. Note that the scan rate may not be attainable by
the server due to network load, server load and other factors.

Characteristics

Access Read-only while logging

Applies to dagroup

Data type double

Values The value is set by the server when a daitem object is created or when
you connect to the server.

See Also

Properties

UpdateRate

11-37

11 Properties

ServeriD

Server identity

Description

ServerlID is the COM style program ID that the opcda object connects to. The program ID is
normally defined during installation of the OPC server.

You use opcserverinfo to find a list of available servers and their Server IDs.

Characteristics

Access Read-only while connected

Applies to opcda

Data type character vector

Values The default value is specified during object creation.
See Also

Functions

opcda, opcserverinfo
Properties

Host

11-38

ShutDownFcn

ShutDownFcn

Callback function file to execute when OPC server shuts down

Description

You configure ShutDownFcn to execute a callback function file when the OPC server shuts down.
Prior to calling the ShutDownFcn callback, the Status property of the opcda object is changed to
‘disconnected’.

When a shutdown event occurs, the function specified in ShutDownFcn is passed two parameters:
Obj and EventInfo. Obj is the object associated with the event, and EventInfo is an event
structure containing the fields Type and Data. The Type field is set to 'Shutdown'. The Data field
contains a structure with the following fields.

Field Name Description
LocalEventTime The time the event occurred, as a MATLAB date vector.
Reason The reason for the server shutdown.

Shutdown event information is stored in the EventLog property.

Characteristics

Access Read/write

Applies to opcda

Data type character vector, function handle, or cell array
Values The default value is @opccallback.

See Also
Functions
opccallback

Properties

EventLog

11-39

11 Properties

StartFcn

Callback function file to execute immediately before logging starts

Description

You configure StartFcn to execute a callback function file when all prelogging steps have been
completed. You start logging by calling the start function. A start event occurs immediately before
Logging is set to 'on".

When a start event occurs, the function specified in StartFcn is passed two parameters: Obj and
EventInfo. Obj is the object associated with the event, and EventInfo is an event structure
containing the fields Type and Data. The Type field is set to 'Start'. The Data field contains a
structure with the fields given below.

Field Name Description

LocalEventTime The time, as a MATLAB date vector, that the event occurred.

GroupName The group name.

RecordsAcquired The number of records acquired in the current logging session at the
time the event occurred.

Start event information is stored in the EventLog property.

Characteristics

Access Read/write

Applies to dagroup

Data type character vector, function handle, or cell array
Values The default value is an empty matrix ([]).

See Also
Functions
start

Properties

EventLog, Logging

11-40

Status

Status

Status of connection to OPC server

Description

Status can be 'disconnected’ or 'connected’. You connect an opcda object with the connect
function and disconnect with the disconnect function. If the opcda object is connected to a server
and the server shuts down, the Status property will be set to 'disconnected’.

Characteristics

Access Read-only

Applies to opcda

Data type character vector

Values [{'disconnected'} | 'connected']
See Also

Functions

connect, disconnect
Properties

ShutDownFcn

11-41

11 Properties

11-42

StopFcn

Callback function file to execute immediately after logging stops

Description

You configure StopFcn to execute a callback function file when logging has stopped. Logging stops
when you issue a stop command, or when the RecordsAcquired value reaches RecordsToAcquire.

When a stop event occurs, the function specified in StopFcn is passed two parameters: 0bj and
EventInfo. Obj is the object associated with the event, and EventInfo is an event structure
containing the fields Type and Data. The Type field is set to 'Stop'. The Data field contains a
structure with the fields given below.

Field Name Description

LocalEventTime The time, as a MATLAB date vector, that the event occurred.

GroupName The group name.

RecordsAcquired The number of records acquired in the current logging session at the
time the event occurred.

Stop event information is stored in the EventLog property.

Characteristics

Access Read/write

Applies to dagroup

Data type character vector, function handle, or cell array
Values The default value is an empty matrix ([]).

See Also
Functions
stop
Properties

EventLog, RecordsAcquired, RecordsToAcquire

Subscription

Subscription

Enable server update when data changes

Description

Subscriptioncanbe 'on' or 'off'.If Subscriptionis 'on', server update notification is
enabled for the group. The update occurs when the server cache quality or value of the data
associated with a daitem object contained by the dagroup object changes. In order for the server
cache to be updated, the percent change in the item value must also be greater than the value
specified for the DeadbandPercent property.

A Subscription value of 'on' instructs the server to issue data change events when items in the
group are updated by the server. Additionally, if an callback function file is specified for the
DataChangeFcn property, that function executes. If Subscriptionis 'off', the server might still
update item values and/or quality information, but no data change event is generated.

Note that the refresh function is a special case of subscription, where refresh forces a data
change event for all active items.

Characteristics

Access Read/write

Applies to dagroup

Data type character vector
Values ['off" | {'on'} 1]
See Also

Functions

read, readasync, refresh
Properties

Active, DataChangeFcn, DeadbandPercent, UpdateRate

11-43

11 Properties

Tag

Label to associate with OPC Toolbox object

Description
You configure Tag to be a character vector value that uniquely identifies an OPC Toolbox object.

Tag is particularly useful when constructing programs that would otherwise need to define the
toolbox object as a global variable, or pass the object as an argument between callback routines. You
can return a toolbox object with the opcfind function by specifying the Tag property value.

Characteristics

Access Read/write

Applies to dagroup, daitem, opcda

Data type character vector

Values The default value is an empty character vector (' ').
See Also

Functions

opcfind

11-44

TimeBias

TimeBias

Time bias of group

Description

TimeBias indicates the time difference between the server and client machines. In some cases the
data may have been collected by a device operating in a time zone other than that of the client. Then
it will be useful to know what the time of the device was at the time the data was collected (e.g., to
determine what shift was on duty at the time).

The time is specified in minutes and can be positive or negative.

Characteristics

Access Read-only

Applies to dagroup

Data type double

Values The default value is 0.
See Also

Properties

TimeStamp

11-45

11 Properties

11-46

Timeout

Maximum time to wait for completion of instruction to server

Description

You configure Timeout to be the maximum time, in seconds, to wait for completion of a synchronous
read or a synchronous write operation. If a time-out occurs, the read or write operation aborts. The

default value is 10.

You can use Timeout to abort functions that block access to the MATLAB command line.

For asynchronous read or write operations, Timeout specifies the time to wait for the server to
acknowledge the request. It does not limit the time for the instruction to be completed by the server.

Characteristics

Access
Applies to
Data type
Values

See Also

Functions

Read/write

opcda

double

Any value in the range [0 Inf]. The default value is 10.

read, readasync, write, writeasync

TimerFcn

TimerFcn

Callback function file to execute when predefined period passes

Description

You configure TimerFcn to execute a callback function file when a timer event occurs. A timer event
occurs when the time specified by the TimerPeriod property passes. Timer events are only generated
when the Status property is set to 'connected'. Timer events will stop being generated when the

object's Status is set to 'disconnected’, either by a disconnect function call, or when the server

shuts down.

Some timer events may not be processed if your system is significantly slowed or if the TimerPeriod
value is too small. Timer event information is not stored in the EventLog property.

Characteristics

Access
Applies to
Data type
Values

See Also
Functions

connect, disconnect
Properties

TimerPeriod

Read/write

opcda

character vector, function handle, or cell array
The default value is an empty matrix ([]).

11-47

11 Properties

TimerPeriod

Period between timer events

Description

TimerPeriod specifies the time, in seconds, that must pass before the callback function specified by
TimerFcn is called.

Some timer events may not be processed if your system is significantly slowed or if the TimerPeriod
value is too small.

Characteristics

Access Read only while logging

Applies to opcda

Data type double

Values Any value in the range [0.001 Inf]. The default value is 10.
See Also

Functions

connect, disconnect
Properties

TimerFcn

11-48

TimeStamp

TimeStamp

Time when item was last read

Description

TimeStamp indicates the time when the Value and Quality properties were obtained by the device (if
this is available) or the time the server updated or validated Value and Quality in its cache.
TimeStamp is updated when you perform an asynchronous or synchronous read operation or when a
subscription callback occurs.

TimeStamp is stored as a MATLAB date vector. You convert date vectors to date character vectors
with the datestr function, and to MATLAB date numbers with the datenum function.

Characteristics

Access Read-only

Applies to daitem

Data type MATLAB date vector

Values The default value is an empty matrix ([]).
See Also

Functions

datestr, datenum, datevec, read, readasync, refresh
Properties

Quality, Subscription, UpdateRate, Value

11-49

11 Properties

Type

OPC Toolbox object type

Description

Type indicates the type of the object. The OPC Toolbox object types are 'opcda’, 'dagroup’, and
‘daitem’. Once an object is created, the value of Type is automatically defined, and cannot be
changed.

You can identify OPC Toolbox objects of a given type using the opcfind function and the Type value.

Characteristics

Access Read-only

Applies to dagroup, daitem, opcda

Data type character vector

Values The value is set during object creation.
See Also

Functions

opcfind

11-50

UpdateRate

UpdateRate

Rate, in seconds, at which subscription callbacks occur

Description

UpdateRate specifies the rate, in seconds, at which subscription callbacks occur. Therefore,
UpdateRate determines how often the cached data can be updated and how often data change
events can occur. Consequently, UpdateRate also controls the rate at which data is logged. You start
logging data change events with the start function.

Data change events can occur only for active items in an active group. Additionally, subscription must
be enabled for the group.

Note that servers can select an update rate that differs from the requested value. If this occurs,
UpdateRate is automatically updated with the returned value. By specifying an update rate of 0,
updates will occur as soon as new information becomes available for the daitem object. New
information is considered to be a change in the Quality property or a change in the data Value that
exceeds the DeadbandPercent property value.

Characteristics

Access Read-only while logging

Applies to dagroup

Data type double

Values Any value greater than or equal to 0. The default value is 0. 5.

See Also
Functions
start

Properties

Active, DeadbandPercent, Subscription

11-51

11 Properties

UserData

Data to associate with OPC Toolbox object

Description

You configure UserData to store data that you want to associate with an OPC Toolbox object. The
object does not use this data directly, but you can access it using the get function.

Characteristics

Access Read/write

Applies to dagroup, daitem, opcda

Data type Any MATLAB data type

Values The default value is an empty matrix ([]).
See Also

Properties

Tag

11-52

Value

Value

Item value

Description

Value indicates the value that was last obtained from the OPC server for the item defined by the
ItemID property. The data type of the value is given by the DataType property.

The value returned from the server may be different from the value of the device to which the
ItemID refers, if the DeadbandPercent for the daitem object's parent group is not zero. The value is
also updated only periodically, based on the parent group's Active and UpdateRate properties.

You determine the validity of Value by checking the Quality property for the item.

Value is updated when you perform an asynchronous or synchronous read operation or when a
subscription callback occurs.

Characteristics

Access Read-only

Applies to daitem

Data type Any MATLAB data type

Values The default value is an empty matrix ([]).
See Also

Functions

read, readasync, refresh
Properties

Active, DataType, DeadbandPercent, Quality, Subscription, TimeStamp, UpdateRate

11-53

11 Properties

WriteAsyncFcn

Callback function file to execute when asynchronous write completes

Description

You configure WriteAsyncFcn to execute a callback function file when an asynchronous write
operation completes. You execute an asynchronous write with the writeasync function. A write
async event occurs immediately after the server notifies the client that data has written to the device.

When a write async event occurs, the function specified in WriteAsyncFcn is passed two
parameters: Obj and EventInfo. Obj is the object associated with the event, and EventInfo is an
event structure containing the fields Type and Data. The Type field is set to 'WriteAsync'. The
Data field contains a structure with the fields defined below.

Field Name Description

LocalEventTime The time, as a MATLAB date vector, that the event occurred.

TransID The transaction ID for the asynchronous write operation.

GroupName The group name.

Items A structure containing information about each item whose value or
quality was written.

The Items structure contains the fields defined below.

Field Name Description

ItemID The item name.

Write async event information is stored in the EventLog property.

Characteristics

Access Read/write

Applies to dagroup

Data type character vector, function handle, or cell array
Values The default value is @opccallback.

See Also

Functions

opccallback, writeasync
Properties

EventLog

11-54

Historical Data Access User's Guide

55

Introduction to OPC Historical Data
Access (HDA)

* “OPC Historical Data Access” on page 12-2
» “Discover Available HDA Servers” on page 12-4
* “Connect to OPC HDA Servers” on page 12-5

12

Introduction to OPC Historical Data Access (HDA)

OPC Historical Data Access

12-2

The OPC Historical Data Access (HDA) standard provides an interoperable platform to store and
exchange historical process data. This standard differs from the OPC Data Access (DA) specification
that deals only with real-time data. OPC Toolbox software provides a client interface to historical data
access servers via the MATLAB environment. This client interface lets you:

* Retrieve data from HDA servers into MATLAB
* Preprocess that data for common analysis tasks
* Visualize the data for easy interpretation

There are several types of OPC HDA historians:

* Simple trend data servers function only as basic raw data storage. The data itself would be of the
type commonly made available by an OPC data access server and would take the form of value,
quality, and timestamp triplets.

* Complex data compression and analysis servers provide data compression in addition to raw data
storage. These servers are used where large volumes of process data are expected and storage
space would be a limiting factor.

* Analysis servers are capable of providing analysis and summary information. They can support the
updating of data and store the history of those updates. Storing data annotations may also be
supported.

OPC Toolbox provides capabilities for reading raw and processed data from servers. Updating data on
an HDA server and retrieving annotations is not supported.

Measurements from process end points (sensors, PLCs, etc.) are represented in the OPC HDA
infrastructure as “items”. Each item has a unique item ID on the server, and therefore can be
accessed uniquely. To best arrange the items, the server orders the items into a logical listing called a
“name space.” These name spaces often take the form of a hierarchical tree in which groups of
similar items are arranged into logical categories:

OPC Historical Data Access

2 Matrikon.OPC Simulation.]

£-@ Simulation Items
- Bucket Brigade
B-@ Random
. @ ArrayOfReal8
~@ ArrayOfString
@ Boolean
@ Int2
@ Intd
~@ Money
Qualities
@ Reald
@ Reald
String
~@ Time
~@ Ulntl
A | Ulntz
¢ @ Ulntd
(- @ Read Error
Saw-toothed Waves
@ Square Waves
@ Triangle Waves
@ Write Error
@ Write Only
Configured Aliases
@ #MonitorACLFile
@ @Clients

An item is usually represented by its fully qualified item ID (FQID) within the name space. An FQID is
usually comprised of each level of the item’s hierarchy separated by periods. For example:

Root.Branchl.Leaf3

In some cases, as in very small or simple historians, a hierarchical structure is not used. Instead all

items are presented as a flat list of items.

12-3

12

Introduction to OPC Historical Data Access (HDA)

Discover Available HDA Servers

12-4

In this section...

“Prerequisites” on page 12-4
“Determine HDA Server IDs for a Host” on page 12-4

Prerequisites

To interact with an OPC server, OPC Toolbox software needs:

* The host name of the computer on which the OPC server is installed. Typically the host name is a
descriptive term (such as 'plantserver') or an IP address (such as 192.168.2.205).

* The server ID of the server you want to access on that host. Because a single computer can host
multiple OPC servers, each server installed on that computer is given a unique ID during
installation.

Your network administrator can provide the host names for all computers with OPC servers on your
network. You can also obtain a list of server IDs for each host on your network, or use the
opcserverinfo function to access server IDs from a host, as described next.

Determine HDA Server IDs for a Host

When an OPC server is installed, it must be assigned a unique server ID. This server ID provides a
unique name for a particular instance of an OPC server on a host, even if multiple copies of the same
server software are installed on that same machine.

To determine the server IDs of the OPC servers installed on a host, call the opchdaserverinfo
function, specifying the host name as the only argument. When called with this syntax, the function
returns a structure containing information about all the OPC servers available on that host:

info =

1x4 OPC HDA ServerInfo array:
index Host ServerID HDASpecification Description
1 localhost Advosol.HDA.Test.3 HDA1 Advosol HDA Test Server V3.0
2 localhost IntegrationObjects.O0PCSimulator.l HDAL Integration Objects OPC DA DX HDA Simulator 2
3 localhost IntegrationObjects.0PCSimulator.1l HDAL Integration Objects' OPC DA/HDA Server Simulator
4 localhost Matrikon.OPC.Simulation.l HDA1 MatrikonOPC Server for Simulation and Testing

The fields in the structure returned by opchdaserverinfo provide this information:

Server Information Returned by opchdaserverinfo

Field Description

Host Character vector that identifies the name of the host. Note that no
name resolution is performed on an IP address.

ServerID Cell array containing the server IDs of all OPC servers accessible
from that host.

HDASpecification Cell array containing the OPC Specification that the server provides.

Description Cell array containing descriptive text for each server.

Connect to OPC HDA Servers

Connect to OPC HDA Servers

Overview

After getting information about your OPC servers as described in “Discover Available HDA Servers”
on page 12-4, you can establish a connection to the server by creating an OPC HDA client object, and
connecting that client to the server. These steps are described next.

Note To run the sample code in the following steps you need the Matrikon OPC Simulation Server on
your local machine. For installation details, see “Install an OPC DA or HDA Simulation Server for OPC
Classic Examples” on page 1-14. The code requires only minor changes to work with other servers.

Create an HDA Client Object

OPC Toolbox does not use groups when dealing with HDA server items. Instead, the items themselves
are passed to the available functions. These functions are accessible through the OPC HDA client
object. In most cases, functions accessed via this HDA client object return an opc.hda.Data object.
These data object simplify the display and manipulation of the historical data retrieved from the HDA
server.

To create an OPC HDA client object, call the opchda function, specifying the host name and server
ID. You retrieved this information using the opchdaserverinfo function (described in “Discover
Available HDA Servers” on page 12-4). This example creates an OPC HDA client object to represent
the connection to a Matrikon OPC Simulation Server:

hdaClient = opchda('localhost', 'Matrikon.OPC.Simulation.1');

View a Summary of a Client Object

To view a summary of the characteristics of the OPC HDA client object you created, enter the variable
name you assigned to the object at the command prompt. For example, this is the summary for the
hdaClient object:

hdaClient =
OPC HDA Client localhost/Matrikon.OPC.Simulation.1:
Host: localhost
ServerID: Matrikon.OPC.Simulation.1l
Timeout: 10 seconds
Status: disconnected

Aggregates: -- (client is disconnected)
ItemAttributes: -- (client is disconnected)
Methods

Connect an OPC HDA Client Object to the HDA Server
Use the connect function to connect a client to the server:
connect(hdaClient);

After connecting to the server, the Status information in the client summary display changes from
disconnected to connected. If the client could not connect to the server (for example, if the OPC

12-5

12

Introduction to OPC Historical Data Access (HDA)

12-6

server is shut down), an error message appears. For information on troubleshooting connections to
an OPC server, see “Troubleshooting” on page 1-17. After connecting to the client to the server, you
can request a list of available aggregate types with the hdaClient.Aggregates function, as well as
available item attributes with hdaClient.ItemAttributes. While connected you can browse the
OPC server name space for information on available server items. See the next section for details on
browsing the server name space. You can list the HDA functions with methods (hdaClient).

Browse the OPC Server Name Space

A connected client object allows you to interact with the OPC server to obtain information about the
name space of that server. The server name space provides access to all the data points provided by
the OPC server by naming each data point with a server item, and then arranging those server items
into a name space that provides a unique identifier for each server item.

The next section describes how to obtain a server name space or a partial server name space, using
the getnamespace and serveritems functions.

Get an OPC HDA Server Name Space

Use the getnamespace function to retrieve the name space from an OPC HDA server. You must
specify the client object that is connected to the server that you are interested in. The name space is
returned as a structure array containing information about each node in the name space.

This example retrieves the name space of the Matrikon OPC Simulation Server installed on the local
host:

hdaClient = opchda('localhost', 'Matrikon.OPC.Simulation.1');
connect (hdaClient);
ns = getnamespace(hdaClient)

ns =

3x1 struct array with fields:
Name
FullyQualifiedID
NodeType
Nodes

This table describes the fields of the structure:

Field Description
Name The name of the node, as a character vector.
FullyQualifiedID The fully qualified item ID of the node, as a character vector. The fully

qualified item ID is made up of the path to the node, concatenated with
'. ' characters. Use the fully qualified item ID when creating an item
object associated with this node.

NodeType The type of node. NodeType can be 'branch' (contains other nodes) or
'leaf' (contains no other branches).

Nodes Child nodes. Nodes is a structure array with the same fields as ns,
representing the nodes contained in this branch of the name space.

From the previous above, exploring the name space shows:

Connect to OPC HDA Servers

ns(1)
Name: 'Simulation Items'
FullyQualifiedID: 'Simulation Items'
NodeType: 'branch'
Nodes: [8x1 struct]
ns(3)
Name: 'Clients'
FullyQualifiedID: 'Clients'
NodeType: 'leaf'
Nodes: []

From this information, the first node is a branch node called 'Simulation Items'. Sinceitisa
branch node, it is most likely not a valid server item. The third node is a leaf node (containing no
other nodes) with a fully qualified ID of 'Clients'. Since this node is a leaf node, it is most likely a
server item that can be monitored by creating an item object. To examine the nodes further down the
tree, reference the Nodes field of a branch node. For example, the first node contained within the
'Simulation Items' node is obtained as follows:

ns(1l).Nodes(1)

Name: 'Bucket Brigade'
FullyQualifiedID: 'Bucket Brigade.'
NodeType: 'branch'

Nodes: [14x1 struct]

The returned result shows that the first node of 'Simulation Items' is a branch node named
'Bucket Brigade', and contains 14 nodes.

ns(1l).Nodes(1).Nodes(9)

ans =
Name: 'Real8'
FullyQualifiedID: 'Bucket Brigade.Real8'
NodeType: 'leaf'
Nodes: []

The ninth node in 'Bucket Brigade' is named 'Real8"' and has a fully qualified ID of 'Bucket
Brigade.Real8'. Use the fully qualified ID to refer to that specific node in the server name space
when creating items using OPC Toolbox software.

12-7

Using OPC Toolbox HDA Client Objects

* “OPC Toolbox HDA Objects” on page 13-2

* “Locate an OPC HDA Server” on page 13-3

* “Create an OPC HDA Client Object” on page 13-4

* “Connect to the OPC HDA Server” on page 13-5

» “Set Client Properties” on page 13-6

* “Browse the OPC Server Name Space” on page 13-7

* “Retrieve an OPC HDA Server Name Space” on page 13-8
* “Read Item Attributes” on page 13-10

13 Using OPC Toolbox HDA Client Objects

OPC Toolbox HDA Objects

13-2

OPC Toolbox uses MATLAB objects to implement OPC HDA client functionality. The OPC HDA client
object allows you to connect to the server and, when a connection is established, to access
information about the server, retrieve the server's name space, and read data from the server. See
“Create an OPC HDA Client Object” on page 13-4 for information on creating a client object.

By default, when data is read from the historian, the results are returned as OPC HDA data objects.
These data objects provide a structured mechanism for storing OPC HDA data. Using data objects,
you can visualize and manipulate historical data for later processing in MATLAB.

Before creating and connecting an OPC HDA client object to an OPC HDA server, you must locate the
server on a particular host. The following sections describe how to locate, connect to, and browse the
data on a server.

Locate an OPC HDA Server

Locate an OPC HDA Server

To establish a connection between MATLAB and an OPC historical data access server, you obtain two
pieces of information that the toolbox needs to uniquely identify the OPC historical data access
server. You use this information when you create an OPC Historical Data Access (OPC HDA) client
object.

The first piece of information is the host name of the server computer. The host name (a descriptive
name like "HistorianServer" or an IP address such as 192.168.16.32) qualifies that computer on the
network and is used by the OPC protocols to determine the available OPC servers on that computer.
In any OPC Toolbox application, you must know the name of the OPC server's host so that a
connection with that host can be established. Your network administrator can provide a list of host
names that provide OPC servers on your network. The following example uses Localhost as the host
name, because it connects to the OPC server on the same machine as the client.

The second piece of information is the OPC server ID. Each OPC server on a particular host is
identified by a unique server ID (also called the Program ID or ProgID) allocated to that server on
installation. The server ID is a character vector, usually containing periods. Although your network
administrator can provide you with a list of server IDs for a particular host, you can query a host for
all available OPC servers using the opchdaserverinfo function.

This example queries the local host for a list of available servers:

hostInfo = opchdaserverinfo('localhost')

hostInfo =
1x4 OPC HDA ServerInfo array:
index Host ServerID HDASpecification Description
1 localhost Advosol.HDA.Test.3 HDA1 Advosol HDA Test Server V3.0
2 localhost 1IntegrationObjects.OPCSimulator.1l HDAl Integration Objects OPC DA DX HDA Simulator 2
3 localhost IntegrationObjects.OPCSimulator.1l HDAl Integration Objects' OPC DA/HDA Server Simulator
4 localhost Matrikon.OPC.Simulation.1 HDA1 MatrikonOPC Server for Simulation and Testing

Examining the returned structure in more detail provides the server IDs of each OPC server:
allServers = {hostInfo.ServerID}

allServers =
Columns 1 through 3

'Advosol.HDA.Test.3"' "IntegrationObjects.0OPCSimulator.1' 'IntegrationObjects.0OPCSimulator.1
Column 4

'Matrikon.0OPC.Simulation.1

13-3

13 Using OPC Toolbox HDA Client Objects

Create an OPC HDA Client Object

13-4

After determining the host name and server ID of the OPC server you want to connect to, you can
create an OPC HDA client object. The client controls the connection status to the server, stores
properties of that server, and allows you to read data from the server.
Create an OPC HDA client using the opchda function, specifying the host name and server ID
arguments:
>> hdaClient = opchda('localhost', 'Matrikon.OPC.Simulation.l')
hdaClient =
OPC HDA Client localhost/Matrikon.OPC.Simulation.1:

Host: localhost

ServerID: Matrikon.OPC.Simulation.1

Timeout: 10 seconds

Status: disconnected

Aggregates: -- (client is disconnected)
ItemAttributes: -- (client is disconnected)

You can also construct client objects directly from an OPC HDA ServerInfo object:

>> hostInfo = opchdaserverinfo('localhost');
>> hdaClient = opchda(hostInfo(l));

Connect to the OPC HDA Server

Connect to the OPC HDA Server

OPC HDA client objects are not automatically connected to the server when they are created. You can
see this from the 'Status' property of the client object.

Use the connect function to connect an OPC HDA client object to the server at the command line:

connect (hdaClient)

When connected, a client’s properties update to show certain server properties:

>> hdaClient
hdaClient =
OPC HDA Client localhost/Matrikon.OPC.Simulation.1:
Host: localhost
ServerID: Matrikon.OPC.Simulation.1l
Timeout: 10 seconds

Status: connected
Aggregates: 6 Aggregate Types

ItemAttributes: 10 Item Attributes
Methods

13-5

13 Using OPC Toolbox HDA Client Objects

Set Client Properties

You can modify many properties specific to the created client. These include Timeout, UserData,
Host (before connection), and ServerID (before connection). Modify these properties as you would
any other field of a MATLAB structure.

Set the Timeout Property

As OPC transactions often occur across networks, you might encounter cases where calls to those
servers take some time to return. To change the function timeout of the OPC HDA client object,
assign a new value to its Timeout property:

>>hdaClient.Timeout = 12
hdaClient =
OPC HDA Client localhost/Matrikon.OPC.Simulation.1:
Host: localhost
ServerID: Matrikon.OPC.Simulation.1
Timeout: 12 seconds

Status: connected
Aggregates: 6 Aggregate Types

ItemAttributes: 10 Item Attributes
Methods

13-6

Browse the OPC Server Name Space

Browse the OPC Server Name Space

A connected client object allows you to interact with the OPC server to obtain information about the
name space of that server. The server name space provides access to all the data points provided by
the OPC server by naming each data point, and then arranging those server items into a name space
that provides a unique identifier for each item.

13-7

13 Using OPC Toolbox HDA Client Objects

Retrieve an OPC HDA Server Name Space

13-8

You use the getNameSpace function to retrieve the name space from an OPC HDA server. You must
specify the client object that is connected to the server of interest. The name space is returned as a
structure array containing information about each node in the name space.

This example retrieves the name space of the Matrikon OPC Simulation Server installed on the local
host:

>> hdaClient = opchda('localhost', 'Matrikon.0OPC.Simulation.1');
>> connect(hdaClient);
>> ns = getnamespace(hdaClient)

ns =

3x1 struct array with fields:
Name
FullyQualifiedID
NodeType
Nodes

This table describes the fields in the structure:

Field Description

Name The name of the node, as a character vector.

FullyQualifiedID The fully qualified item ID of the node, as a character vector, often
composed of the path to the node, concatenated with '. ' characters. Use
the fully qualified item ID when creating an item object associated with
this node.

NodeType The type of node. Can be 'branch' (contains other nodes) or 'leaf'
(contains no other branches).

Nodes Child nodes. Structure array with the same fields as ns, representing the
nodes contained in this branch of the name space.

From the previous example, exploring the name space shows the following:.

ns(1)

ans =
Name: 'Simulation Items'
FullyQualifiedID: 'Simulation Items'
NodeType: 'branch'
Nodes: [8x1 struct]

ns(3)

ans =
Name: 'Clients'
FullyQualifiedID: 'Clients'
NodeType: 'leaf'
Nodes: []

In this example, the first node is a branch node called 'Simulation Items'. Because it is a branch
node, it is probably not a valid server item. The third node is a leaf node (containing no other nodes)
with a fully qualified ID of 'Clients'. Because this node is a leaf node, it is most likely a server item
that can be read. To examine the nodes further down the tree, you need to reference the Nodes field

Retrieve an OPC HDA Server Name Space

of a branch node. For example, the following code obtains the first node contained within the
'Simulation Items' node:

ns(1l).Nodes(1)

ans =
Name: 'Bucket Brigade'
FullyQualifiedID: 'Bucket Brigade.'
NodeType: 'branch'
Nodes: [14x1 struct]

The result shows that the first node of 'Simulation Items' is a branch node named 'Bucket
Brigade', and contains 14 nodes.

ns(1).Nodes(1).Nodes(9)

Name: 'Real8'
FullyQualifiedID: 'Bucket Brigade.Real8'
NodeType: 'leaf'
Nodes: []

The ninth node in 'Bucket Brigade' is named 'Real8' and has a fully qualified ID of 'Bucket
Brigade.Real8'. You use the fully qualified ID to refer to that specific node in the server name
space when referencing items using OPC Toolbox software.

13-9

13 Using OPC Toolbox HDA Client Objects

Read Item Attributes

Each item that you find on a server might have a given set of item attributes associated with it. These
attributes provide information about the item stored on the server. The OPC Foundation defines a set
of common item attributes, while specific servers can define server-specific attributes. However,
support for item attributes is optional for any server.

13-10

You can find the attributes supported by your server by interrogating the ItemAttributes property

of a connected HDA client object:

hdaClient.ItemAttributes
OPC HDA Item Attributes:

Name ID
DATA TYPE 1
DESCRIPTION 2
NORMAL _MAXIMUM 11
NORMAL_MINIMUM 12
ITEMID 13
TRIANGLE 4294967291
SQUARE 4294967292
SAWTOOTH 4294967293
RANDOM 4294967294
BUCKET 4294967295

Description
Data type
Item Description
High EU
Low EU
Item ID
Triangle Wave
Square Wave
Saw-toothed Wave
Random
Bucket Brigade

You use the readItemAttributes function to retrieve the item attributes for a particular item.

For a list of OPC defined item attributes for the OPC HDA specification, see “OPC HDA Item

Attributes” on page C-2.

Reading OPC Historical Data

* “Overview to Reading Historical Data” on page 14-2

* “Read Historical Data Over a Time Range” on page 14-3

* “Read Historical Data at Specific Times” on page 14-4

* “Read Processed Aggregate Data” on page 14-5

» “Retrieve Large Historical Data Sets” on page 14-6

+ “Reading Modified Data” on page 14-7

* “Native MATLAB Data Types from Read Operations” on page 14-8
» “Disconnect from HDA Servers” on page 14-9

* “Clean Up OPC HDA Objects” on page 14-10

14 Reading OPC Historical Data

Overview to Reading Historical Data

14-2

After creating an OPC HDA client object (“Create an OPC HDA Client Object” on page 13-4) and
connecting to the relevant server (“Connect to the OPC HDA Server” on page 13-5), you can access
an array of functions which allow for the retrieval of historic data in various forms. The function you
use depends on the type and range of data required as well as whether any aggregation or processing

is required on that data.

The following table depicts the functions you can call to read certain types of data.

Function Task or Condition

readRaw Read data from the server as it was recorded, and process
that data using MATLAB.

readAtTime Read regularly sampled data or data from specific time
stamps, and trust the interpolation algorithms used by the
Server.

readProcessed The server processes data over a long time range, returning
aggregates for particular intervals within that time range.

readModified The server is capable of modifying data stored on the server,

and you want to know what the values were before they
were modified.

Read Historical Data Over a Time Range

Read Historical Data Over a Time Range

The readRaw function allows you to request the value, quality, and timestamp data for a list of items
over a specified time domain. Define the time domain by indicating start and end times for the
sampling. This function returns all data stored on the historian within the given time range.

By default, historians return the first data point found from the start time specified, up to the data
point found just before the end time. By setting the optional 'bounds' parameter to true, you can
indicate that bounding values be included. The server then returns data at the start and end times. If
no data exists at those exact times, the server returns the data value that is closest to that time but
outside the time range specified.

This function is useful if you want to retrieve raw values from the server, and processes that data
using MATLAB rather than relying on the server to perform the processing for you.

For example, if you are interested in the values between 17 November 2010 and 18 November 2010
inthe 'Int2' items under the 'Random' branch of an OPC HDA server, and you were interested in
retrieving the bounding values, use this code:

DataObject = ReadRaw(HdaClient, 'Random.Int2',
datenum(2010,11,17), datenum(2010,11,18), TRUE)

To read values at specified time stamps use the readAtTime function. If you are reading large
amounts of data and will be aggregating that data, consider using readProcessed (if your server
supports that function).

14-3

14 Reading OPC Historical Data

Read Historical Data at Specific Times

14-4

The readAtTime function reads the values for a list of item IDs at specific times. This is useful if
your analysis routine requires regularly sampled data and you can accept the interpolation scheme
used by your server. If no value exists on the server at the exact timestamp requested, the value is
interpolated from the surrounding data values.

For example, if you wanted the values of two items at this current moment and their values at the
same time yesterday, you could use the following code:

itemList = {'Random.Intl', 'Random.Boolean'}
timeStamps = [now; now-1];
dataObject = readAtTime(hdaClient, itemList, timeStamps)

Additionally, you can request that the data be returned as a supported MATLAB data type. See
“Native MATLAB Data Types from Read Operations” on page 14-8.

The same example could be called, but with a MATLAB data type specified as a fourth parameter. This
function call returns all the data values as 8-bit signed integers:

dataObject = readAtTime(HdaClient, ItemList, TimeStamps, 'int8"')

You can now use this object as required, or display it as described in “Display Data Objects” on page
15-3.

Read Processed Aggregate Data

Read Processed Aggregate Data

Historians can include the ability to process raw data in a variety of ways before returning it to you.
Examples of such processing include the interpolation of data points, time averaging, and standard
deviation calculations. Processing of data can be very useful when there is a large amount of data on
the server. Instructing the server to return only a processed data set can greatly reduce the time and
volume of data transferred.

You can discover which aggregates are supported by the server by requesting the Aggregates
property of a connected HDA client object:

aggTypes = clientObject.Aggregates

aggTypes =
OPC HDA Aggregate Types:
Name ID Description
INTERPOLATIVE 1 Retrieve interpolated values.
TIMEAVERAGE 4 Retrieve the time weighted average data over the resample interval.
MINIMUMACTUALTIME 7 Retrieve the minimum value in the resample interval and the timestamp of the minimum value.
MINIMUM 8 Retrieve the minimum value in the resample interval.
MAXIMUMACTUALTIME 9 Retrieve the maximum value in the resample interval and the timestamp of the maximum value.
MAXIMUM 10 Retrieve the maximum value in the resample interval.

In the previous example, the server supports six types of aggregate.

You can request processed data using the readProcessed function and passing in the ID of the
aggregate required. You can retrieve the property ID using the object and the appropriate aggregate

type.
clientObject.Aggregates. TIMEAVERAGE
4

hdareadProcessed = readProcessed(clientObject, ItemList, clientObject.Aggregates.TIMEAVERAGE, ...
AggregateInterval, StartTime, EndTime)

hdareadProcessed =
1-by-5 OPC HDA Data object:
ItemID Value Start TimeStamp End TimeStamp Quality
Random.Intl 1 int8 value 2010-11-28 13:56:40.666 2010-11-29 13:56:40.666 1 unique quality [Calculated]

Random.Boolean 1 logical value 2010-11-28 13:56:40.666 2010-11-29 13:56:40.666 1 unique quality [Calculated]

The requested time domain is split into the time intervals you provide as the fourth function
argument. The aggregates are calculated over these intervals.

Additionally, you can request that the data be returned as a supported MATLAB data type. See
“Native MATLAB Data Types from Read Operations” on page 14-8.

14-5

14 Reading OPC Historical Data

Retrieve Large Historical Data Sets

14-6

This example shows how to retrieve very large data sets from OPC historical data access servers.

Your OPC HDA server may have a defined upper limit on how much data to return in any given
historical data access read operation. That upper limit is returned by the MaxReturnValues field of
the structure returned by calling getServerStatus on the client object. A value of 0 means there is
no defined limit, and the server returns all possible values.

When you request data over a wide time range, the server returns up to MaxReturnValues elements
for each item, and the read function issues a warning. The warning ID is
opc:hda:mex:ReadMoreData. To retrieve all values, use code similar to that shown here.

This example retrieves all values of two items over a full year.

lastwarn('');
startTime = datenum(2013,1,1); % Replace with your start time
endTIme = datenum(2013,12,31); % Replace with your end time
itmList = {'Plantl.Unit2.FIC1001', 'Plant2.Unitl.FIC1001'}; % Replace with your item list
wState = warning('off', 'opc:hda:mex:ReadMoreData');
yearData = hdaObj.readRaw(itmList,startTime,endTime);
[warnMsg, warnID] = lastwarn;
gotAllData = isempty(strfind(warnID,':ReadMoreData'));
while ~gotAllData
% Update start time to last time retrieved
endDates = cellfun(@(x)x(end), {yearData.TimeStamp});
startTime = max(endDates);
% Read data and append to existing data set
moreData = hdaObj.readRaw(itmList,startTime,endTime);
yearData = append(yearData,moreData);
[warnMsg, warnID] = lastwarn;
gotAllData = isempty(strfind(warnID, ':ReadMoreData'));
end
% Reset warning state
warning(wState);

Reading Modified Data

Reading Modified Data

It is possible that at some point historical data might be modified on the server, and you are
interested in these changes. In this case you would use readModified function. This function
returns the timestamps at which the data was modified and the value before that modification. If
readRaw, readAtTime, or readProcessed returns a quality value of OPCHDA EXTRADATA, it
indicates that the item in question has been modified and more information can be retrieved using
readModified. By providing the function with a list of items that you are interested in and the time
range over which you would like to query for changes, you can retrieve any changed data items. This
function operates similarly to readRaw, but only modified data is returned.

14-7

14 Reading OPC Historical Data

Native MATLAB Data Types from Read Operations

14-8

The default format of returned data is an M-by-1 OPC HDA data object containing data values whose
type is defined by the OPC variant type the server stored it as. In some cases, such as readAtTime
and readProcessed, you can specify that the read operations return data in native MATLAB data
types, including structures and cell arrays.

For example, you can request the same set of data in the following ways.

Request Structure Output

In this case, the read operation returns a single output containing four fields:

struct
struct

HDAObject.readAtTime('Random.Intl', TimeStamps, 'struct')

ItemID: 'Random.Intl’

Timestamp: [8x1 double]

Quality: [8x1 double]
Value: [8x1 int8]

Request MATLAB Numeric Data Output

When you request MATLAB numeric types as output, the read operation returns four outputs: Item
ID, Value, Quality, and TimeStamp. The Value output is converted into the MATLAB data type
requested. The following example returns all Value data as unsigned 32-bit integers:

[itmId, val, Q, ts] = HDAObject.readAtTime('Random.Intl', TimeStamps, 'uint32');

Request Cell Array Output

When requesting cell array output, the read operation returns four outputs: Item ID, Value, Quality,
and TimeStamp. The Value output is a cell array, preserving the original data type of the item on the
server.

[cItemId, cVal, cQ, cTimes] = HDAObject.readAtTime('Random.Intl', TimeStamps, 'cell')

Disconnect from HDA Servers

Disconnect from HDA Servers

Disconnecting a client releases the client object from the server and frees system resources. Do this
by calling the disconnect command on the client object:

disconnect(hdaObject)

14-9

14 Reading OPC Historical Data

Clean Up OPC HDA Objects

Disconnecting a client does not delete the client object from the MATLAB workspace, nor does it
remove any data objects created during reads executed via the client object. You can remove these
objects from the workspace using the MATLAB clear command:

clear hdaObj
clear dataObj

14-10

Working with OPC HDA Data Objects

* “Introduction to OPC HDA Data Objects” on page 15-2
+ “Display Data Objects” on page 15-3
* “OPC HDA Quality Values” on page 15-4
“Manipulate Data Using OPC Toolbox HDA Objects” on page 15-5

15 Working with OPC HDA Data Objects

Introduction to OPC HDA Data Objects

15-2

All data returned from OPC HDA servers can be stored in MATLAB as an OPC HDA data object. The
HDA data object allows for convenient data storage, manipulation, and visualization. The data
elements themselves are represented by one or more value, quality, and timestamp values, all
associated with an item ID.

When you perform read operations on OPC HDA servers, you request data for one or more item IDs
on that server over a specified time range. For each item requested, the OPC server returns zero or
more data object elements stored as triplets of Value (the sensor reading or item value), Quality (the
quality of the value stored), and TimeStamp (the time the data was logged by the server). The Value,
Quality, and TimeStamp properties are always M-by-1 vectors. The data type of the Value property
depends on what the server returns to MATLAB. See “Conversion Between MATLAB Data Types and
COM Variant Data Types” on page 8-13.

Each read operation thus returns an array of OPC HDA data objects, one for each item requested.
Elements of a data object array are not guaranteed to have the same number of Value, Quality, and
TimeStamp triples, because the server might not have logged data at the same time for all items
requested.

Display Data Objects

Display Data Objects

OPC HDA data read operations can produce a large amount of data returned to MATLAB. To
accommodate this, OPC Toolbox provides two functions to display data objects. By default, a summary
of the data is presented. To display data in this form, type the object name at the MATLAB command
line, similar to this:

myDataObject

1-by-1 OPC HDA Data object:
ItemID Value Start TimeStamp End TimeStamp Quality

Scalar.Iteml 8 double values 2010-10-13 14:18:11.832 2010-11-11 14:18:11.832 1 unique quality [Extra Data]

The showValues function displays the internal values of the data object in a table. This form is
preferable if you want all the data values to be visible, for example when generating reports or
visually scanning the data.

myDataObject.showValues

OPC HDA Data object for item Scalar.Iteml:

TIMESTAMP VALUE QUALITY
2010-10-13 14:18:11.832 3.000000 Extra Data (Bad)
2010-10-18 14:18:11.832 37.000000 Extra Data (Bad)
2010-10-22 14:18:11.832 17.000000 Extra Data (Bad)
2010-10-23 14:18:11.832 21.000000 Extra Data (Bad)
2010-11-01 14:18:11.832 25.000000 Extra Data (Bad)
2010-11-09 14:18:11.832 38.000000 Extra Data (Bad)
2010-11-10 14:18:11.832 31.000000 Extra Data (Bad)
2010-11-11 14:18:11.832 39.000000 Extra Data (Bad)

15-3

15 Working with OPC HDA Data Objects

OPC HDA Quality Values

OPC HDA quality values identify the quality or integrity of retrieved historical data. The quality is
returned as a 32-bit number with only the upper 16 bits relating specifically to HDA; the lower 16 bits
relate to both OPC data access. For information on data access quality, see “OPC Quality” on page A-
2.

Upper 16-bit HDA Quality Values

Quality Values Description Mask Value Associated DA
Quality
OPCHDA EXTRADATA More than one piece of data that |0x00010000 Good, Bad, Quest
might be hidden exists at same
timestamp.
OPCHDA INTERPOLATED Interpolated data value. 0x00020000 Good, Bad, Quest
OPCHDA RAW Raw data value. 0x00040000 Good, Bad, Quest
OPCHDA CALCULATED Calculated data value, as would |0x00080000 Good, Bad, Quest

be returned from a
ReadProcessed call.

OPCHDA NOBOUND No data found to provide upper |0x00100000 Bad
or lower bound value.
OPCHDA NODATA No data collected. Archiving not |0x00200000 Bad
active (for item or all items).
OPCHDA DATALOST Collection started / stopped / lost. |0x00400000 Bad
OPCHDA CONVERSION Scaling / conversion error. 0x00800000 Bad, Quest
OPCHDA PARTIAL Aggregate value is for an 0x01000000 Good, Bad, Quest

incomplete interval.

15-4

Manipulate Data Using OPC Toolbox HDA Objects

Manipulate Data Using OPC Toolbox HDA Objects

OPC HDA data objects provide initial data storage, visualization, and manipulation functions for you
to work with OPC historical data in MATLAB. To facilitate preparation for further processing, OPC
HDA data objects allow you to resample OPC historical data as follows:

» To prepare data for analysis algorithms that require data to be regularly sampled, use the
resample function.

* To ensure that data from all items contains the same timestamp vector, use the tsunion function,
which keeps all data and interpolates data for missing timestamps in each item, or the
tsintersect function, which discards any data from a timestamp that does not exist in all items
in the object.

Resample Data Objects to Include All Available Time Stamps Using
tsunion

Given an array of data objects, tsunion adapts all data to have a single common set of timestamps
by finding all unique time stamps in all items of the array. The values of each data item are then
extrapolated or interpolated at the new timestamps. Resampling is performed using the method
specified in the function call. Valid methods are 'linear', 'spline’, 'pchip', 'nearest’, and
"hold'. The default is 'linear'. If any returned Value is a character vector, only 'hold"' is
supported. Elements with the same item ID are combined, so that tsunion creates data ohjects with
unique item IDs. The Quality of interpolated timestamps is set to ' Interpolated:Good', and for
extrapolated timestamps is set to ' Interpolated:Uncertain'.

12112 18112 2612 02/01 09101 0512 12112 18112 2612

|
12112 1912 26012 02/01 09/01 0s/12 12112 1912 26012

|
12112 19/12 26/12 02/01 09/01 05/12 12112 19/12 26/12

The top two plots above depict two separate data objects. The bottom plot is the result of these two
data objects being passed to the tsunion function. You can see that in the bottom plot that each
element has been extended to include the timestamps of the other and that values have been
extrapolated to satisfy these new timestamps.

15-5

15 Working with OPC HDA Data Objects

Resample Data Objects to Include All Common Time Stamps Using
tsintersect

When you are interested in only the timestamps common to a number of data objects, you can use the
tsintersect function. It generates a new OPC HDA data object in which each element has the same
timestamp vector composed of those timestamps that were common to all items in the original data
objects provided. If the provided data objects contain elements with the same item ID, those elements
are combined into one before computing the intersection.

| |
12112 1912 26/12 02/01 09/01 0512 12112 1912 26/12

12112 19112 26112 02/01 09/01 05112 12112 19112 2612

15-6

1212 19112 26/12 02/01 00/01 0512 1212 19112 26/12

The previous figure shows how the values of two data objects, plotted in the first and second positions
respectively, can be intersected to produce a new object whose elements contain only timestamps
common to the original two. Uncommon timestamps are discarded along with their data values.

Resample Data to a New Set of Time Stamps

You might want to resample all items in a data object at specified time stamps; for example, when you
have data values for a second item and want to correlate your data object with the original at the
same timestamps. Where no exact values are available, the resample function resamples
(interpolate or extrapolate) the data values at the requested time stamps using the resampling
method you specify. Valid methods include 'linear"', 'spline', 'pchip’', and 'nearest' (see
interpl for details on these methods), as well as 'hold', which implements a zero-order-hold
behavior (previous values are held until a new value exists).

For character vector values, only the 'hold' method is supported. Trying to resample data
containing character vectors with any method other than 'hold' generates an error.

This concept is illustrated in the following graphic.

Manipulate Data Using OPC Toolbox HDA Objects

25

12112 19112 26/12 02/01

In this figure, the blue line represents the original data values while the red line represents the
resampled data at a new set of timestamps. These new timestamps are marked by red stars while the
original timestamps are marked by blue circles.

Convert OPC HDA Data Objects to MATLAB Numeric Data Types

When retrieving data from the server and storing it in an OPC Toolbox data object, the client
automatically converts the values from the OPC variant types (see Comparison of MATLAB and COM
Variant Data Types). Retrieve the data values from the data object by referencing the Value property.
For example, to display and access the first element of the hdaReadRaw data object:

hdaReadRaw
hdaReadRaw =
1-by-5 OPC HDA Data object:
ItemID Value Start TimeStamp End TimeStamp Quality
Random.Intl 5 int8 values 2010-12-01 16:05:30.902 2010-12-01 16:05:32.869 unique quality [Raw]

Random.Uint2 5 double values 2010-12-01 16:05:30.962 2010-12-01 16:05:32.869
Random.Real8 5 double values 2010-12-01 16:05:30.962 2010-12-01 16:05:32.869
Random.String 5 cell values 2010-12-01 16:05:30.902 2010-12-01 16:05:32.869
Random.Boolean 5 logical values 2010-12-01 16:05:30.902 2010-12-01 16:05:32.869

unique quality [Raw]
unique quality [Raw]
unique quality [Raw]
unique quality [Raw]

e

class(hdaReadRaw(1) .Value)

int8

An alternative is to call standard type conversion methods available in MATLAB on the entire object,
in which case all items are converted to the chosen type (assuming they have the same timestamp
vectors):

newArray = double(hdaReadRaw(1));
class(newArray)

double

15-7

15 Working with OPC HDA Data Objects

In this example, hdaReadRaw (1) has an initial native data type of 'int8', yet after passing it to the
"double' conversion call, the resulting values are of the native MATLAB type 'double’.

15-8

OPC HDA and UA Classes

16 0PC HDA and UA Classes

16-2

opc.hda.AggregateTypes class

Package: opc.hda

OPC HDA server aggregate types

Construction
You do not create AggregateTypes objects directly; instead, when you connect an OPC HDA client

to the server, the Aggregates property is automatically populated with available aggregate types for
that server.

Methods

getDescription Get description of OPC HDA aggregate type or item attribute
getIDFromName Translate OPC HDA aggregate type or item attribute name to numeric identifier

getIDList Get all aggregate type or item attribute IDs
getNameList Get all aggregate type or item attribute names
Properties

AggregateTypes objects have no generic user-visible properties. Instead, each available aggregate
type is created as a property. For example, if the server supports the TIMEAVERAGE aggregate type,
the AggregateTypes object stored in the Aggregates property of a client connected to that server
has a property named TIMEAVERAGE with its value set to the numeric ID of that attribute.

Copy Semantics

Value — To learn how this affects your use of the class, see Comparing Handle and Value Classes in
the MATLAB Object-Oriented Programming documentation.

See Also
opc.hda.Client | readProcessed

opc.hda.Data class

opc.hda.Data class

Package: opc.hda
OPC HDA data object

Description

The opc.hda.Data object stores and presents information retrieved from an OPC historical data
access server. The OPC HDA data object allows you to store and process data retrieved from an OPC
HDA server, and convert that data into MATLAB data types that can be operated on further.

Construction

You construct OPC HDA data objects using the various methods to read an OPC HDA client object.
Methods
Properties

Copy Semantics

Value — To learn how this affects your use of the class, see Comparing Handle and Value Classes in
the MATLAB Object-Oriented Programming documentation.

See Also
readAtTime | readModified | readProcessed | readRaw

16-3

16 0PC HDA and UA Classes

16-4

opc.hda.ltemAttributes class

Package: opc.hda

OPC HDA item attributes

Description

OPC servers store and publish item attributes for each item in the server's name space. Such
attributes assist in describing items, including their scaling, limits, and data types. A server is not
obliged to store attributes, although common attributes are defined in the OPC HDA specification.

The ItemAttributes class is used to store item attributes available on a server. You do not create
ItemAttributes objects directly; instead, when you connect an OPC HDA client to the server, the
ItemAttributes property is automatically populated with available item attributes for that server.

You can access the required aggregate type using dot-notation on the ItemAttributes property of a
connected OPC HDA client. For example, for client hdaObj, you can access the MAXIMUM attribute by
typing hdaObj .ItemAttributes.MAXIMUM. Tab completion works for item attributes. Specific
attributes are distinguished from class methods by all-capitals: getDescription is not an available
aggregate type, but is a method of the ItemAttributes class.

Construction
You do not create ItemAttributes objects directly; instead, when you connect an OPC HDA client

to the server, the ItemAttributes property is automatically populated with available item
attributes for that server.

Methods

getDescription Get description of OPC HDA aggregate type or item attribute
getIDFromName Translate OPC HDA aggregate type or item attribute name to numeric identifier

getIDList Get all aggregate type or item attribute IDs
getNameList Get all aggregate type or item attribute names
Properties

ItemAttributes objects have no generic user-visible properties. Instead, each available item
attribute is created as a property. For example, if the server supports the DESCRIPTION item
attribute, the ItemAttributes object stored in the ServerItemAttributes property of a client
connected to that server has a property named DESCRIPTION with the value set to the numeric ID of
that attribute.

Copy Semantics

Value — To learn how this affects your use of the class, see Comparing Handle and Value Classes in
the MATLAB Object-Oriented Programming documentation.

opc.hda.ltemAttributes class

See Also
opc.hda.Client | readItemAttributes

16-5

16 0PC HDA and UA Classes

16-6

opc.hda.Serverinfo class

Package: opc.hda

OPC HDA server information objects

Description

The ServerInfo class stores information about installed OPC HDA servers on a specified host. You
can use ServerInfo objects to quickly construct OPC HDA clients associated with a particular OPC
HDA server.

Construction

You should not directly create this class. Instead, use opchdaserverinfo to retrieve information
about servers from a particular host.

Methods
findDescription Locate OPC HDA servers with particular description

Properties

Copy Semantics

Value — To learn how this affects your use of the class, see Comparing Handle and Value Classes in
the MATLAB Object-Oriented Programming documentation.

See Also
opchdaserverinfo

Unified Architecture User’s Guide

OPC Unified Architecture (UA)

* “About OPC Unified Architecture” on page 17-2

* “OPC UA Components” on page 17-3

* “OPC UA Server Data Types” on page 17-5

* “OPC UA Security” on page 17-7

* “OPC UA Certificate Management” on page 17-9

* “OPC UA Aggregate Functions” on page 17-10

* “Access Data from OPC UA Servers” on page 17-13

17 OPC Unified Architecture (UA)

About OPC Unified Architecture

17-2

The OPC Unified Architecture (OPC UA) standard combines all the capabilities of OPC Data Access
and OPC Historical Data Access standards (together, referred to as "OPC Classic") and adds various
additional capabilities into a single, extensible standard. OPC UA servers provide a single namespace
which organizes the data available on the server into a hierarchical view of nodes (also called items in
OPC Classic terminology). Nodes on OPC UA servers can be object nodes, which organize other
nodes, or variable nodes, which have a value representing some process value on the server. Variable
nodes can contain other variable nodes. Nodes are arranged in a number of representations; for OPC
Toolbox, the nodes are exposed as a hierarchical tree, with nodes containing subnodes called
children.

OPC UA servers are required to publish a node in their namespace named "Server". The Server node
provides information about the OPC UA server, including the capabilities of the server, specific
limitations of the server, and other information related to the server. OPC Toolbox provides selected
information from the Server node as properties of the client you create to connect to that server. For
information on client properties, see opc.ua.Client.

OPC UA servers may or may not historize Variable nodes. For historizing nodes, OPC UA servers store
prior values of the node, and can provide that history to OPC UA Clients as raw data (data points at
the times that the server stored the Value), or as data at requested times (the server interpolates the
raw data using either sample-and-hold or linear interpolation), or as processed data, using a
predefined aggregate function that is requested by the user. Each OPC UA server describes which
Aggregate Functions are supported by that server. "OPC UA Aggregate Functions" describes the
standard aggregate functions defined in the OPC UA specification. Servers may implement custom
aggregate functions; consult the specific OPC UA server reference for information on how those
functions work. OPC Toolbox provides a client interface to the OPC UA servers which allows you to
browse the server namespace to find nodes of interest. OPC Toolbox supports the opc.tcp binary
protocol and anonymous, unsecured connections. You can also use the client to define the security
configuration for the connection, and provide user credentials to the server. OPC Toolbox supports
the opc.tcp binary protocol only; HTTP(S) connections are not supported. For some of the tasks you
can perform with OPC Toolbox, see the related examples at the end of this topic.

See Also

Related Examples

. “Read and Write Current OPC UA Server Data” on page 20-51
. “Read Historical OPC UA Server Data” on page 20-56
. “Visualize and Preprocess OPC UA Data” on page 20-61

OPC UA Components

OPC UA Components

In this section...

“Overview” on page 17-3

“OPC UA Client” on page 17-3

“OPC UA Node” on page 17-3

“OPC UA Data” on page 17-3

“OPC UA Quality” on page 17-4

“Working with Time in OPC UA” on page 17-4

Overview

OPC Toolbox provides an OPC UA client to connect to OPC UA servers. Using the client, you connect
to the server, query server status, browse the server namespace, read and write current values, and
read historical values from nodes on the server. Historical data is retrieved as OPC data objects,
which allow you to process historical data in preparation for common analysis tasks.

OPC UA Client

You construct the OPC UA client using the opcua function. You set the security configuration for the
connection using setSecurityModel. You connect the client to the server using connect,
optionally passing user authentication credentials. The client includes a number of properties
describing the server capabilities, including supported security models and user authentication
options. See opc.ua.Client for more information on the properties available to the client. You can
also query the server for extended status information using getServerStatus.

You use the client to perform any communication with the server, including browsing the server name
space, reading and writing current values, and reading historical values from the server.

OPC UA Node

The OPC UA client includes a Namespace property, which contains the top level of the server’s
namespace as an array of Nodes. An OPC UA Node variable describes the node on the server, and
contain other subnodes in the Children property. Nodes have a NodeType which can be 'Object’
or 'Variable'. Object nodes have no value associated with them, and are used purely for organizing
the namespace of the server. Variable nodes store current values, representing a sensor or actuator
value associated with the server. For more information, see opc.ua.Node

Servers can choose to historize nodes (store previous data values for that node). The Historizing
property of a Node defines whether a server is historizing the node or not. If you try to retrieve
historical data from a Variable node with Historizing set to false, no data is returned and an
error is displayed.

You can read and write current values, and retrieve historical data, using Node variables directly.
This is simply a short-hand for performing the same operations on the node Client property.

OPC UA Data

Data retrieved from OPC UA servers includes three important values. The Value is accompanied by a
Quality and a Timestamp. The Quality represents how accurately the data Value is considered to

17-3

17 OPC Unified Architecture (UA)

17-4

reflect the actual source value attached to the server. The Timestamp represents the time that the
server recorded the value, or received notification from the data source that the value is current.

When you retrieve current values, the Value, Quality, and Timestamp are retrieved into separate
arrays. When you retrieve historical values, OPC UA servers might return a different number of
Value, Quality, and Timestamp arrays for each Node requested. This data is packaged into an OPC UA
Data object, which allows you to process this data set in preparation for common analysis tasks. For
more information, type

help opc.ua.Data

For an example of working with OPC UA data, see “Visualize and Preprocess OPC UA Data” on page
20-61.

OPC UA Quality

OPC UA Quality values are 32-bit integer values. OPC UA Qualities encode many different
characteristics of the quality of the data returned from a current or historical data read operation,
including the Major quality (Good, Uncertain, or Bad), quality substatus (dependent on Major
quality), value limits (High Limit, Low Limit, Constant), and history origin and characteristics (Raw,
Interpolated, Calculated). You can query these characteristics individually using functions specific to
the Quality variable that is returned in the read operation. For more information, type

help opc.ua.QualityID

Working with Time in OPC UA

OPC UA servers return timestamps for server status and for all current and historical read
operations. The timestamp represents the time at which the server recorded the data value returned
in the read operation. Timestamps are represented in MATLAB by datetime values. The datetime
values are always returned in the time zone of the MATLAB client used to retrieve the data from the
OPC UA server. OPC UA historical read functions require time ranges or specific timestamp arrays
over which to retrieve historical data. You can specify time ranges using MATLAB datetime values,
or as MATLAB date numbers. Any numeric value passed as a timestamp is interpreted as a MATLAB
date number. For functions requiring a start and end timestamp, you can also pass a start timestamp
and a duration.

OPC UA Server Data Types

OPC UA Server Data Types

OPC UA servers store data retrieved from sensors, actuators and other data sources, in Variable
Nodes. The Value of each Variable Node is stored and retrieved as a specific Server Data Type, and
may be a single value, or an array of values of that data type. The ServerDataType property of an
opc.ua.Node object describes the OPC UA data type used by the server to store the node Value.

When you read data from the server, the value is translated into a corresponding MATLAB data type.

The OPC UA Standard defines simple data types, and Structures which consist of fields containing
other data types. Vendors and standards organizations may define extended Data Types, but these are
all collections of standard data types, and these collections can be retrieved as multiple Nodes

containing Standard Data Types.

The following table describes the OPC UA Standard Data Types, and how these are represented in
MATLAB. Any ServerDataType value not shown here cannot be read by OPC Toolbox.

OPC UA Data Type MATLAB Data Type Notes
Boolean Logical
Byte uint8

ByteString (*)

uint8 vector

Arrays converted to cell array of
uint8

DateTime (*) Datetime

Double Double

ExpandedNodeld (*) Structure Fields: NodeId, NaspaceUri,
ServerIndex

Float Single

Guid (*) Encoded character vector Arrays converted to cell array of
character vectors

Int16 intl6

Int32 int32

Int64 int64

LocalizedText Character vector Arrays converted to cell array of
character vectors

Nodeld (*) Encoded character vector Arrays converted to cell array of

character vectors

QualifiedName (*)

Encoded character vector

Arrays converted to cell array of

character vectors

SByte int8

String Character vector Arrays converted to cell array of
character vectors

Structure (*) Structure

Time (*) Datetime Arrays not supported.

Ulnt16 uint16

17-5

17 OPC Unified Architecture (UA)

OPC UA Data Type MATLAB Data Type Notes

Ulnt32 uint32

Ulnt64 uint64

XmlElement (*) Character vector Arrays converted to cell array of
character vectors

When writing values to an OPC UA server, the value is translated to the equivalent OPC UA Data Type
as long as the value is specified as the MATLAB data type described above. You cannot write OPC UA

Data Types marked (*).

17-6

OPC UA Security

OPC UA Security

OPC Unified Architecture has been designed to support secure, authenticated connections between
OPC UA servers and clients. Nonproprietary, industry standard protocols are used to achieve security
in OPC UA communication. Security in OPC UA is provided using three mechanisms:

* Messages passed between an OPC UA client and server can be sent in one of three Message
Security Modes:

* None: No security. Messages are sent in clear text.

* Sign: Messages are signed by the sender, to authenticate the origin of the message. However,
messages are not encrypted.

* SignAndEncrypt: Messages are signed by the sender, to authenticate the origin of the
message, and encrypted to ensure privacy.

* Encryption and signing of the messages is performed using industry standard Asymmetric
Cryptography schemes. A Channel Security Policy defines the specific scheme to use for
encryption and signing. For a list of currently supported Channel Security Policies in OPC Toolbox,
type the following command in MATLAB:

enumeration opc.ua.ChannelSecurityPolicies

When setting up a secure connection between the OPC UA Client and OPC UA Server, each of the
parties exchange Application Instance Certificates that are used to encrypt and sign messages
sent between the parties. These certificates can optionally be checked against a certificate trust
list maintained by system administrators for each application to ensure that connections are made
to the correct server, from the correct client. OPC Toolbox currently accepts server certificates
automatically when the connection is established. For more information, see “OPC UA Certificate
Management” on page 17-9.

* User Authentication may be used by the server to restrict access to features of the server based
on the specific user making the connection. OPC Toolbox supports the following user
authentication options:

* Anonymous: A user name is not provided. Some servers might not allow for anonymous user
authentication.

* Username: A user name and password combination authenticates the specific user making the
connection.

e Certificate: A User Certificate (in X509 standard) is used to authenticate the user. The
public key of the certificate must be pre-shared with the server, and when establishing the
connection the user must provide the public key, private key, and a password used to protect
the private key. Clear (passwordless) private keys are not supported by OPC Toolbox.

Servers normally support more than one security model for clients to use when connecting to the
server. The supported security models that a server supports are described through endpoints
available from the server. Each endpoint defines one Channel Security Policy, the allowable Message
Security Modes, and supported User Authentication types. To use that specific endpoint, the client
makes a connection to the endpoint URL provided in the endpoints list and defines the Message
Security Mode to use.

You query the available endpoints of a server using opcuaserverinfo, or by constructing an OPC
UA client with opcua. Once you construct an OPC UA client, you can set the security model to use for
that connection using setSecurityModel. You pass the user credentials when you connect to the
server using the connect function.

17-7

17 OPC Unified Architecture (UA)

See Also

More About

. “OPC UA Components” on page 17-3
. “OPC UA Certificate Management” on page 17-9

17-8

OPC UA Certificate Management

OPC UA Certificate Management

For securing communications between the client and the server, OPC UA relies on certificates
exchanged during the connection process. Certificates consist of a private key, held by the owner; a
public key, shared with communication partners; and a password to unlock the private key. If a
certificate is compromised in any way (for example, by exposing the private key to unknown parties)
then the certificate can be placed in a Revocation List so that servers know not to trust clients using
that certificate.

To ensure that only authorized clients can connect to an OPC UA server, the server administrator
might require that any client attempting to connect to the OPC UA server pre-share their Client
Application Instance Certificate before a connection can be established. In this case you must export
the client public key and the administrator can store that public key in a trust list for the server.

OPC Toolbox automatically generates a Client Application Instance when you first call
opcuaserverinfo or construct an OPC UA client with opcua. You use
exportClientCertificate to copy the client public key to a file for sharing with server
administrators.

Note for Administrators Currently it is not possible to replace the Client Application Instance
Certificate for OPC Toolbox.

See Also

More About

. “OPC UA Components” on page 17-3
. “OPC UA Security” on page 17-7

17-9

17 OPC Unified Architecture (UA)

OPC UA Aggregate Functions

Introduction

OPC UA servers can return historical data as an aggregate of some function performed on the data
history at particular periods. When you request processed data using the readProcessed function,
you specify an Aggregate to use, and an Aggregate Interval of time over which to perform that
Aggregate function. The server then performs the Aggregate function on each period of Aggregate
Interval defined, returning one value associated with all the data in that interval. For example, the
"Maximum" Aggregate Function returns the maximum value in the Aggregate Interval; the Range
Aggregate Function returns the difference between the highest and lowest value in the aggregate
interval.

OPC UA Aggregates are represented in MATLAB by a character vector defining the Aggregate
Function, or by the opc.ua.AggregateFnld enumeration class. For example, to specify that a
readProcessed operation use the Maximum Aggregate Function, you can use either of the following

syntaxes:
readProcessed(UaClient,NodelList, 'Maximum',...)
readProcessed(UaClient,NodelList,opc.ua.AggregateFnId.Maximum,...)

Available Aggregate Functions on an OPC UA Server

When an OPC UA Client is connected to an OPC UA server, the client’s AggregateFunctions
property stores a list of aggregate functions supported by that server. Servers need not implement
every Aggregate Function defined by the OPC UA Standard, but must publish the Aggregate
Functions that are supported by that server. Use the AggregateFunctions property to ensure that
the aggregate function you need is supported by the server. Note, however, that the server might not
implement that function for all Variable nodes on the server. If you attempt to retrieve processed data
from the server, you might get an "Unsupported Aggregate Function" error, even if the aggregate
function is reported as being supported by the server.

OPC UA Standard Aggregate Functions

The following functions are defined by the OPC Foundation.

Function Description

AnnotationCount Retrieve the number of Annotations in the interval.

Average Retrieve the average value of the data over the interval.

Count Retrieve the number of raw values over the interval.

Delta Retrieve the difference between the Start and End values in the
interval.

DeltaBounds Retrieve the difference between the StartBound and EndBound
values in the interval.

DurationBad Retrieve the total duration of time in the interval during which the
data is bad.

DurationGood Retrieve the total duration of time in the interval during which the

data is good.

17-10

OPC UA Aggregate Functions

Function

Description

DurationInStateNonZero

Retrieve the time a Boolean or numeric was in a nonzero state
using Simple Bounding Values.

DurationInStateZero Retrieve the time a Boolean or numeric was in a zero state using
Simple Bounding Values.

End Retrieve the value at the end of the interval using Interpolated
Bounding Values.

EndBound Retrieve the value at the end of the interval using Simple Bounding
Values.

Interpolative At the beginning of each interval, retrieve the calculated value
from the data points on either side of the requested timestamp.

Maximum Retrieve the maximum raw value in the interval with the
timestamp of the start of the interval.

Maximum?2 Retrieve the maximum value in the interval including the Simple
Bounding Values.

MaximumActualTime Retrieve the maximum value in the interval and the timestamp of
the maximum value.

MaximumActualTime2 Retrieve the maximum value with the actual timestamp including
the Simple Bounding Values.

Minimum Retrieve the minimum raw value in the interval with the timestamp
of the start of the interval.

Minimum?2 Retrieve the minimum value in the interval including the Simple
Bounding Values.

MinimumActualTime Retrieve the minimum value in the interval and the timestamp of
the minimum value.

MinimumActualTime2 Retrieve the minimum value with the actual timestamp including
the Simple Bounding Values.

NumberOfTransitions Retrieve the number of changes between zero and nonzero that a
Boolean or Numeric value experienced in the interval.

PercentBad Retrieve the percent of data (0 to 100) in the interval which has
bad StatusCode.

PercentGood Retrieve the percent of data (0 to 100) in the interval which has
good StatusCode.

Range Retrieve the difference between the Minimum and Maximum values
over the interval.

Range2 Retrieve the difference between the Minimum2 and Maximum?2

values over the interval.

StandardDeviationPopulat
ion

Retrieve the standard deviation for the interval for a complete
population (n) which includes Simple Bounding Values.

StandardDeviationSample

Retrieve the standard deviation for the interval for a sample of the
population (n-1).

Start

Retrieve the value at the beginning of the interval using
Interpolated Bounding Values.

17-11

17 OPC Unified Architecture (UA)

17-12

Function Description

StartBound Retrieve the value at the beginning of the interval using Simple
Bounding Values.

TimeAverage Retrieve the time weighted average data over the interval using
Interpolated Bounding Values.

TimeAverage?2 Retrieve the time weighted average data over the interval using
Simple Bounding Values.

Total Retrieve the total (time integral) of the data over the interval using
Interpolated Bounding Values.

Total2 Retrieve the total (time integral) of the data over the interval using
Simple Bounding Values.

VariancePopulation Retrieve the variance for the interval as calculated by the
StandardDeviationPopulation which includes Simple
Bounding Values.

VarianceSample Retrieve the variance for the interval as calculated by the
StandardDeviationSample.

WorstQuality Retrieve the worst StatusCode of data in the interval.

WorstQuality2 Retrieve the worst StatusCode of data in the interval including the
Simple Bounding Values.

See Also

Access Data from OPC UA Servers

Access Data from OPC UA Servers

In this section...

“OPC UA Programming Overview” on page 17-13

“Step 1: Locate Your OPC UA Server” on page 17-13

“Step 2: Create an OPC UA Client and Connect to the Server” on page 17-14
“Step 3: Browse OPC UA Server Namespace” on page 17-15

“Step 4: Read Current Values from the OPC UA Server” on page 17-16

“Step 5: Read Historical Data from the OPC UA Server” on page 17-17
“Step 6: Plot the Data” on page 17-18

“Step 7: Clean Up” on page 17-18

OPC UA Programming Overview

This topic shows the basic steps to create an OPC Unified Architecture (UA) application by retrieving
current and historical data from a Simulation Server running on your local machine.

Note To run the sample code in the following steps you need the Prosys OPC UA Simulation Server
running on your local machine. You can also optionally install the Local Discovery Service and
register the Prosys server with the LDS. For installation details, see “Install an OPC UA Simulation
Server for OPC UA Examples” on page 1-15. The code requires only minor changes to work with
other servers.

Step 1: Locate Your OPC UA Server

In this step, you obtain information that the toolbox needs to uniquely identify the OPC UA server
that you want to connect to. You use this information when creating an OPC UA client object,
described in Step 2: Create an OPC UA Client Object.

The first piece of information is the host name of the server computer. The host name (a descriptive
name like "HistorianServer" or an IP address such as 192.168.16.32) qualifies that computer on the
network, and is used by the OPC protocols to determine the available OPC servers on that computer.
In any OPC Toolbox application, you must know the name of the OPC server's host, so that a
connection with that host can be established. Your network administrator can provide a list of host
names that provide OPC servers on your network. In this example, you will use ' localhost' as the
host name, because you will connect to the OPC server on the same machine as the client.

OPC UA servers are uniquely identified by Universal Resource Locations. Similar to web addresses, a
URL for an OPC UA server starts with opc.tcp://, and then provides an address of the server as a
hostname, port, and address in standard ASCII text. For example, the URL for the Prosys OPC UA
Simulation Server is opc.tcp://localhost:53530/0PCUA/SimulationServer.

OPC UA Server URLs are advertised through an OPC UA Local Discovery Service (LDS), available on

every OPC UA server host machine. Your system administrator can provide a list of server URLs for a
particular host, or you can query the host for all available OPC UA servers.

17-13

17 OPC Unified Architecture (UA)

17-14

If you have installed the LDS and registered the OPC UA server with the LDS, you can use the
opcuaserverinfo function to query hosts from the command line. If you have not installed the LDS,
skip to Step 2.

serverList = opcuaserverinfo('localhost')

serverList =
1x2 OPC UA ServerInfo array:
index Description Hostname Port
1 SimulationServer myhost.local 53530

2 Quickstart Data Access Server myhost.local 62547

Locate the server of interest by using the findDescription function to search for a specific
character vector in the server description.

hsInfo = findDescription(serverList, 'Simulation')

hsInfo =
OPC UA ServerInfo 'SimulationServer':

Connection Information
Hostname: 'myhost.local’
Port: 53530

From this discovery process, you can identify the port (53530) on which the OPC UA server listens for
connections. The discovery process also makes it easier to construct and connect to the required OPC
UA server.

Step 2: Create an OPC UA Client and Connect to the Server

After locating your OPC UA server, you create an OPC UA Client to manage the connection to the
server, obtain key server characteristics, and read and write data from the server. You can use the
opcuaserverinfo result to construct an OPC UA client directly.

uaClient = opcua(hsInfo)
Or you could create a client using the hostname and port directly.
uaClient = opcua('localhost',53530)

uaClient =
OPC UA Client:

Server Information:
Name: 'SimulationServer@localhost'
Hostname: 'localhost'
Port: 53530
EndpointUrl: 'opc.tcp://localhost:53530/0PCUA/SimulationServer!

Connection Information:
Timeout: 10
Status: 'Disconnected’
ServerState: '<Not connected>'

Security Information:
MessageSecurityMode: SignAndEncrypt

Access Data from OPC UA Servers

ChannelSecurityPolicy: Aes256 Sha256 RsaPss
Endpoints: [1x11l opc.ua.EndpointDescription]

The client is initially disconnected from the server, as shown by the Status property. After you
connect to the server, additional properties are shown in the client display.

connect(uaClient)

uaClient

OPC UA Client:

Server Information:

Name:
Hostname:
Port:
EndpointUrl:

Connection Information:

Timeout:
Status:
ServerState:

Security Information:

MessageSecurityMode:
ChannelSecurityPolicy:
Endpoints:

'SimulationServer@localhost'

"localhost’

53530
'opc.tcp://localhost:53530/0PCUA/SimulationServer'

10
"Connected’
'Running’

SignAndEncrypt
Aes256 Sha256 RsaPss
[1x11 opc.ua.EndpointDescription]

Server Limits:
MinSampleRate:
MaxReadNodes:
MaxWriteNodes:
MaxHistoryReadNodes:
MaxHistoryValuesPerNode:

[cNoNoNoNO)

The additional properties describe capabilities of the server, notably limits for various read and write
operations. A limit value of 0 indicates that the server does not impose a direct limit on that
capability.

Step 3: Browse OPC UA Server Namespace

OPC UA servers provide a single namespace for you to read and write both current data and
historical data. The namespace is organized as a hierarchy of nodes. Each node has attributes which
describe that node. A node is uniquely identified by two elements: A namespace index (numeric
integer) and a node identifier (numeric integer, character vector, or Globally Unique Identifier or
GUID). To uniquely describe a node, you have to provide both the namespaceindex and the identifier;
you cannot provide only the identifier because that might be repeated for different namespace
indexes.

OPC Toolbox exposes the hierarchy of nodes through the namespace property of the OPC UA client.
Each element of the namespace property is a node at the top-most level of the server. Every node in
the namespace has a Children property which exposes the subnodes contained in that node. You
can browse the namespace graphically using the browseNamespace function. The resulting dialog
box allows you to select nodes from the hierarchy and return them in the output from the function.

serverNodes = browseNamespace(uaClient)

17-15

17 OPC Unified Architecture (UA)

17-16

4] Browse Name Space — O »
Namespace: Selected tems:

a SimulationServer -~ 0.Server.ServerCapabilties. MinSupp »
S-@ Server 0:Server.ServerCap

"@ Serverstatus

B @ ServerCapabilities
(-8 ModellingRules
[H-@ AggregateFunctior
[H-@ HistoryServerCapal
-8 CperationLimits
----- ‘@ |ocaleldArray

- @ MinSuppertedSam it
----- 8 MaxQueryContinu
----- ‘8 MaxByteStringlent
----- @ ServerProfiledrray
----- ‘8 MaxHistoryContin
----- @ SoftwareCertificate
----- 8 MaxStringlength
----- @ MaxBrowseContini
----- 8 MaxArraylength
B8 ServerDiagnostics w w
< > < >

=

oK | Cancel

When you click OK the selected items are returned in the command window output.

serverNodes =
1x2 OPC UA Node array:
index Name NsInd Identifier NodeType Children
1 MinSupportedSampleRate ©0 2272 Variable 0
2 MaxArrayLength 0 11702 Variable 0

Nodes can have data values associated with them or can simply be containers for other nodes. The
NodeType property of a node identifies the node as an object node (container) or variable node
(data). For more information on how to programmatically search the server namespace, see “Browse
OPC UA Server Namespace” on page 20-44.

Step 4: Read Current Values from the OPC UA Server

OPC UA servers provide access to both current and historical values of their Variable nodes. With
OPC Toolbox you use arrays of Nodes to read current values from the server. Current data includes
the value, a timestamp that the server received the data value from the sensor, and a quality
describing the accuracy and source of the data value.

[val,ts,qual] = readValue(uaClient,serverNodes)

val =
2x1 cell array
{[0 secl}
{[65535]}
ts =
2x1 datetime array
10-Apr-2019 09:46:43
10-Apr-2019 09:46:43

Access Data from OPC UA Servers

qual =

OPC UA Quality ID:
'Good'
'Good'

For more information on reading and writing current values, see “Read and Write Current OPC UA
Server Data” on page 20-51.

Step 5: Read Historical Data from the OPC UA Server

Historical data is stored for selected nodes on the OPC UA server. The server nodes retrieved in the
previous step will not be archived by the server because the values do not generally change. You can
query the Historizing property of a Node to determine if the server is currently archiving data for
that node.

Because the serverNode list is an array, you must collect the outputs using concatenation.
[serverNodes.Historizing]

ans =
0 0

None of the server nodes are currently being historized. In addition, the server does not allow
historical access to these nodes, as evidenced by the AccessLevelHistory property of the nodes.

{serverNodes.AccessLevelHistory}

ans =
‘none' "none'’

To locate nodes with history, query the server for the Double and Int32 nodes in the Simulation
parent node.

simNode = findNodeByName(uaClient.Namespace, 'Simulation')

simNode =
OPC UA Node:

Node Information:
Name: 'Simulation'
Description: 'The type for objects that organize other nodes.'
NamespaceIndex: 5
Identifier: '85/0:Simulation’
NodeType: 'Object'’

Hierarchy Information:
Parent: Server
Children: 14

The Simulation node is an Object node, so it has no Value. However, it has 7 Children. Locate the
Sinusoid and Random child nodes. The '-partial' flag finds nodes beginning with the argument
provided.

sineNode = findNodeByName(simNode, 'Sinusoid', '-partial');
randNode = findNodeByName(simNode, 'Random', '-partial')
randNode =

OPC UA Node:

Node Information:
Name: 'Randoml'’

17-17

17 OPC Unified Architecture (UA)

17-18

Description: "'

NamespaceIndex: 5
Identifier: 'Randoml’
NodeType: 'Variable'

Hierarchy Information:
Parent: 'Simulation'
Children: 0

ServerDataType: Double
AccesslLevelCurrent: read/write
AccesslLevelHistory: read

Historizing: 0

Although the Sinusoidl and Randoml nodes are not currently being archived (Historizing is
false) you can read history data from the nodes (the history was logged at startup, and then turned
off). To read all data stored on the server within a specified time range, use the readHistory
function, passing the nodes to read and the time range over which to read the data.

histData = readHistory(uaClient, [sineNode, randNode],datetime('now')-seconds(10),datetime('now"'))

histData =
1-by-2 OPC UA Data object array:
Timestamp Sinusoidl Randoml

2019-04-10 09:58:31.000 0.415823 [Good (Raw)] 0.131428 [Good (Raw)]
2019-04-10 09:58:32.000 0.813473 [Good (Raw)] 0.038980 [Good (Raw)]
2019-04-10 09:58:33.000 1.175570 [Good (Raw)] 0.316324 [Good (Raw)]
2019-04-10 09:58:34.000 1.486290 [Good (Raw)] 0.229609 [Good (Raw)]
2019-04-10 09:58:35.000 1.732051 [Good (Raw)] 0.208826 [Good (Raw)]
2019-04-10 09:58:36.000 1.902113 [Good (Raw)] 0.483303 [Good (Raw)]
2019-04-10 09:58:37.000 1.989044 [Good (Raw)] 0.393722 [Good (Raw)]
2019-04-10 09:58:38.000 1.989044 [Good (Raw)] 0.206232 [Good (Raw)]
2019-04-10 09:58:39.000 1.902113 [Good (Raw)] 0.116650 [Good (Raw)]
2019-04-10 09:58:40.000 1.732051 [Good (Raw)] 0.391128 [Good (Raw)]

Obtain a summary of the data retrieved.

summary (histData)

1-by-2 OPC UA Data object:

Name Value Start Timestamp End Timestamp Quality

Sinusoidl 10 double values 2019-04-10 09:58:31.000 2019-04-10 09:58:40.000 1 unique quality [Good (Raw)]
Randoml 10 double values 2019-04-10 09:58:31.000 2019-04-10 09:58:40.000 1 unique quality [Good (Raw)]

Step 6: Plot the Data

You can plot the data directly from the resulting opc.ua.Data object.

plot(histData)
legend show

You can also convert the data into MATLAB native data types for further processing. For information
on processing data, see “Visualize and Preprocess OPC UA Data” on page 20-61.

Step 7: Clean Up
When you have finished exchanging data with the OPC server, you should disconnect from the server.
disconnect(uaClient)

You can then clear the OPC UA variables from MATLAB memory. If you clear an OPC UA client from
memory, the connection to the server is automatically closed.

OPC Information Reference

19

OPC Quality

A oPcC Quality

OPC Quality

OPC Toolbox software uses specific quality attributes defined by the OPC Foundation, based on a
major quality value, a substatus for that major quality value, and a limit status indicating how the
value is limited. This appendix describes the standard quality attributes defined by the OPC
Foundation that are used in the toolbox, and describes any special extensions that the toolbox uses.

An OPC quality value is a number ranging from 0 to 65535, made up of four parts. The high 8 bits of
the quality value represent the vendor-specific quality information. The low 8 bits are arranged as
QQSSSSLL, where QQ represents the major quality, SSSS represents the quality substatus, and LL
represents the limit status.

OPC HDA quality values are layered on top of OPC DA quality values.

The following topics describe the OPC quality values and texts associated with each quality part.
* “Major Quality” on page A-3

* “Quality Substatus” on page A-4

* “Limit Status” on page A-6

For more information, see the Quality property reference page. The quality of an item is also stored in
native value format in the QualityID property of the daitem object.

Major Quality

Major Quality

OPC Toolbox software uses the following major quality values and text. The major quality is contained
in bits 7 and 8 of the quality value.

Major Quality Values Used in OPC Toolbox Software

Value Quality Text Description

0 Bad The value is not useful for the reason indicated by the substatus. The
table Bad Quality Substatus Values contains information about the
substatus for bad quality.

1 Uncertain The quality of the value is uncertain for reasons indicated by the
substatus. The table Uncertain Quality Substatus Values contains
information about the substatus for uncertain quality.

3 Good The quality of the value is good. The table Good Quality Substatus
Values contains information about the substatus for good quality.

N/A Repeat The value is repeated from a previous known value for this item. This
toolbox-specific value occurs only in data returned from getdata or
opcread, when you request array formatted values.

See Also

More About

. “OPC Quality” on page A-2

. “Quality Substatus” on page A-4
. “Limit Status” on page A-6

A Quality Substatus

Quality Substatus

Each major quality status has an additional substatus that describes the quality of the value in more
detail. The following tables describe the quality substatus for each major quality.

* Good Quality Substatus Values

* Uncertain Quality Substatus Values
* Bad Quality Substatus Values

Good Quality Substatus Values

Value Substatus Text Description

0 Non-specific The value is good. There are no special
conditions.

6 Local Override The value has been overridden. Typically, this

means that the device has been disconnected
from the OPC server (either physically, or
through software) and a manually entered value
has been forced.

Uncertain Quality Substatus Values

Value

Substatus Text

Description

0

Non-Specific

The server has not published a specific reason
why the value is uncertain.

Last Usable Value

Whatever was writing the data value has
stopped doing so. The returned value should be
regarded as "stale." Note that this quality value
differs from 'Bad: Last Known Value' in
that the "bad" quality is associated specifically
with a detectable communications error. The
"Uncertain: Last Usable Value' textis
associated with the failure of some external
source to "put" something into the value within
an acceptable period of time. You can examine
the age of the value using the TimeStamp
property associated with this quality.

Sensor Not Accurate

Either the value has pegged at one of the sensor
limits, or the sensor is otherwise known to be
out of calibration via some form of internal
diagnostics.

Engineering Units
Exceeded

The returned value is outside the limits defined
for this value. Note that this substatus does not
imply that the value is pegged at some upper
limit. The value may exceed the engineering
units even further in future updates.

Sub-Normal

The value is derived from multiple sources and
has less than the required number of good
sources.

Quality Substatus

Bad Quality Substatus Values

Value

Substatus Text

Description

0

Non-Specific

The value is bad but no specific reason is known.

1

Configuration Error

There is some server-specific problem with the
configuration. For example, the item in question
is deleted from the running server configuration.

Not Connected

The input is required to be logically connected to
something, but is not connected. This quality may
reflect that no value is available at this time,
possibly because the data source has not yet
provided one.

Device Failure

A device failure has been detected.

Sensor Failure

A sensor failure has been detected.

Last Known Value

Communication between the device and the
server has failed. However, the last known value
is available. Note that the age of the last known
value can be determined from the TimeStamp
property.

Comm Failure

Communication between the device and server
has failed. There is no last known value available.

Out of Service

The Active state of the item or group containing
the item is set to of f. This quality is also used to
indicate that the item is not being updated by the
server for some reason.

See Also

More About

. “OPC Quality” on page A-2
. “Major Quality” on page A-3

. “Limit Status” on page A-6

A Limit Status

Limit Status

The limit status is not dependent on the major quality and substatus parts of a quality value.

The following table lists the limit status values and texts used in OPC Toolbox software.

Value Limit Status Text

Description

0 Not Limited

The value is free to move. Note that when the
limit status has this value, it is omitted from any
quality attribute in the toolbox.

Low Limited

The value is fixed at some lower limit.

High Limited

The value is fixed at some upper limit.

Constant

The value is a constant and cannot change.

See Also

More About

. “OPC Quality” on page A-2

. “Major Quality” on page A-3

. “Quality Substatus” on page A-4

OPC DA Server Item Properties

B orc DA Server Item Properties

OPC DA Server Item Properties

All server items defined in an OPC server name space have associated properties that describe that
server item in more detail. The properties defined by the OPC Foundation are described in these

topics:

¢ “OPC Item Property Set” on page B-3

» “OPC Specific Properties” on page B-4

* “OPC Recommended Properties” on page B-5

For more information on querying OPC server item properties, consult the help for
serveritemprops.

OPC Item Property Set

OPC Item Property Set

Every item defined by an OPC server has specific attributes, or properties, that describe that server
item in more detail. These properties include the current Value, Quality and TimeStamp for the server
item, plus additional properties that a server may require in order to determine the quality of a value,
or to decide whether to generate a DataChange event for groups that have a nonzero
DeadbandPercent value. Exposure of the server item properties to a client is intended to provide a
client with more information on a specific item, and is not intended to provide efficient access to
large amounts of data. Rather, you should use the read function to read data from a large number of
server items.

Each property is identified by a Property ID, or PropID, which is an integer value. The OPC Data
Access Specification defines three sets of these properties, based on their PropID.

OPC Item Property Sets

Set Name ID Range Description

OPC Specific 1-99 Information directly related to the OPC server for that
item.

OPC Recommended 100-4999 Additional information which is commonly associated
with items, such as ranges of valid values, alarm limits,
etc.

Vendor Specific 5000 or greater |Specific properties defined by an OPC server vendor.
Since these vary from vendor to vendor, the actual
descriptions are not presented in this appendix.

Each of the property sets defined by the OPC Foundation is presented in the following sections.

Note OPC servers must implement the OPC specific properties. However, the recommended
properties are not mandatory, and an OPC server could provide any subset of the recommended
properties, or none of them.

See Also

More About

. “OPC DA Server Item Properties” on page B-2
. “OPC Specific Properties” on page B-4
. “OPC Recommended Properties” on page B-5

B-3

B orc Specific Properties

OPC Specific Properties

OPC Specific Properties

B-4

PropiD

Description

1

“Item Canonical DataType”
The data type of the item as stored on the OPC server. This property is also
exposed in the CanonicalDataType property of the daitem object.

“Item Value”

The value that was last obtained from the OPC server for the item. This
property is the same as the Value property of the daitem object. Querying
this property behaves like a read operation from the device.

“Item Quality”

The quality of the item's Value property. This property is the same as the
Quality property of the daitem object. Querying this property behaves like
a read operation from the device.

“Item Timestamp”

The time that the Value and Quality was obtained by the device (if this is
available) or the time the server updated or validated the Value and
Quality in its cache. This property is the same as the TimeStamp property
of the daitem object. Querying this property behaves like a read operation
from the device.

“Item Access Rights”
The ability of the server to read or write data to this item.

“Server Scan Rate”

Represents the fastest rate at which the server could obtain data from the
underlying data source. The accuracy of this value could be affected by
system load and other factors, and is not a guaranteed rate.

7-99

Reserved for future use

See Also

More About

. “OPC DA Server Item Properties” on page B-2

. “OPC Item Property Set” on page B-3

. “OPC Recommended Properties” on page B-5

OPC Recommended Properties

OPC Recommended Properties

The Recommended Properties are divided into the following tables.

* Recommended Properties Related to the Item Value

* Recommended Properties Related to Operator Displays

* Recommended Properties Related to Alarm and Condition Values

Recommended Properties Related to the Item Value

PropiD

Description

100

“EU Units”
The engineering units for this item.

101

“Item Description”
A description of the item.

102

“High EU”

Present only for analog data. Represents the highest value likely to be
obtained in normal operation. Also used by servers that support non-zero
DeadbandPercent values for a group.

103

“Low EU”

Present only for analog data. Represents the lowest value likely to be
obtained in normal operation. Also used by servers that support non-zero
DeadbandPercent values for a group.

104

“High Instrument Range”
Represents the highest value that can be returned by the instrument.

105

“Low Instrument Range”
Represents the highest value that can be returned by the instrument.

106

“Contact Close Label”
Present only for discrete data. Represents text to be associated with this
contact when it is in the closed (non-zero) state.

107

“Contact Open Label”
Present only for discrete data. Represents text to be associated with this
contact when it is in the open (zero) state.

108

“Item Timezone”

The difference in minutes between the item’s UTC Timestamp and the local
time in which the item value was obtained. OPC Toolbox software does not
use this property to adjust time stamps for an item.

109-199

Reserved for future use.

B 0PC Recommended Properties

B-6

Recommended Properties Related to Operator Displays

ProplID Description
200 “Default Display”

The name of an operator display associated with this item.
201 “Current Foreground Color”

The COLORREF in which the item should be displayed.
202 “Current Background Color”

The COLORREF in which the item should be displayed.
203 “Current Blink”

Defines whether a display of this item should blink.
204 “BMP File”

Bitmap file associated with this item.
205 “Sound File”

.WAV or .MID file associated with this item.
206 “HTML File”

URL reference for this item.
207 “AVI File”

Video file associated with this item.
208-299 Reserved for future OPC use.

OPC Recommended Properties

Recommended Properties Related to Alarm and Condition Values

ProplID Description
300 “Condition Status”
The current alarm condition status associated with the item.
301 “Alarm Quick Help“
A short text providing a brief set of instructions for the operator to follow
when this alarm occurs.
302 “Alarm Area List”
An array of texts indicating the plant or alarm areas which include this item.
303 “Primary Alarm Area”
A text indicating the primary plant or alarm area including this item.
304 “Condition Logic”
An arbitrary test describing the test being performed.
305 “Limit Exceeded”
For multistate alarms, the condition exceeded.
306 “Deadband”
307 “HiHi Limit”
308 “Hi Limit”
309 “Lo Limit”
310 “LoLo Limit”
311 “Rate of Change Limit”
312 “Deviation Limit”
313-4999 Reserved for future OPC use.
See Also
More About

. “OPC DA Server Item Properties” on page B-2

. “OPC Item Property Set” on page B-3

. “OPC Specific Properties” on page B-4

OPC HDA Item Attributes

C OPC HDA Item Attributes

OPC HDA Item Attributes

+ Data Type — Specifies the data type for an item. See the definition of a particular Variant for valid
values.

Comparison of MATLAB and COM Variant Data Types

MATLAB Data Type OPC Server Data Type (COM Variant Type)
double VT R8

single VT R4

char VT BSTR
logical VT BOOL
uint8 VT Ull

uint16 VT UI2

uint32 VT Ul4
uint64 VT UI8

int8 VT I1

int16 VT 12

int32 VT 14

int64 VT I8

cell N/A

struct N/A

object N/A

N/A VT DISPATCH
N/A VT BYREF
double VT EMPTY

* Description — Describes the item.
* Eng Units — Specifies the label to use in displays to define the units for the item (e.g., kg/sec).

* Stepped — Specifies whether data from the history repository should be displayed as interpolated
(sloped lines between points) or stepped (vertically-connected horizontal lines between points)
data. Value of 0 indicates interpolated.

* Archiving — Indicates whether historian is recording data for this item (0 means no).

* Derive Equation — Specifies the equation to be used by a derived item to calculate its value. This
is free-form text.

* Node Name — Specifies the machine which is the source for the item. This is intended to be the
broadest category for defining sources. For an OPC Data Access Server source, this is the node
name or IP address of the server. For non-OPC sources, the meaning of this field is server-specific.

* Process Name — Specifies the process which is the source for the item. This is intended to the
second-broadest category for defining sources. For an OPC DA server, this would be the registered
server name. For non-OPC sources, the meaning of this field is server-specific.

* Source Name — Specifies the name of the item on the source. For an OPC DA server, this is the
ItemID. For non-OPC sources, the meaning of this field is server-specific.

C-2

OPC HDA Item Attributes

Source Type — Specifies what sort of source produces the data for the item. For an OPC DA
server, this would be "OPC". For non-OPC sources, the meaning of this field is server-specific.

Normal Maximum — Specifies the upper limit for the normal value range for the item. It is used
for trend display default scaling and exception deviation limit calculations.

Normal Minimum — Specifies the lower limit for the normal value range for the item. It is used
for trend display default scaling and exception deviation limit calculations.

ItemID — Specifies the item ID.

Max Time Interval — Specifies the maximum interval between data points in the history
repository regardless of their value change. A new value shall be stored in history whenever the
specified number of seconds have passed since the last value stored for the item.

Min Time Interval — Specifies the minimum interval between data points in the history
repository regardless of their value change. A new value shall not be stored in history unless the
specified number of seconds have passed since the last value stored for the item.

Exception Deviation — Specifies the minimum amount that the data for the item must change in
order for the change to be reported to the history database.

Exception Dev Type — Specifies whether the exception deviation is given as an absolute value,
percent of span, or percent of value. The span is defined as High Entry Limit - Low Entry Limit.

High Entry Limit — Specifies the highest valid value for the item. A value for the item that is
above this limit cannot be entered into history. This is the top of the span.

Low Entry Limit — Specifies the lowest valid value for the item. A value for the item that is below
this limit cannot be entered into history. This is the zero for the span. What follows is a list
describing the OPC specified attributes which may be supported by the server.

See Also

Functions
readItemAttributes

More About

“Read Item Attributes” on page 13-10

C-3

Functions

18 Functions

18-2

addgroup

Add data access group to opcda object

Syntax

GrpObj
GrpObj
GrpObj

addgroup (DAObj)
addgroup(DAObj,GName)
addgroup(DAObj,GName,GrpType)

Description

GrpObj = addgroup(DAObj) adds a group to the opcda object DAObj. A group is a container for a
client to organize and manipulate data items. Typically, you create different groups to support
different update rates, activation status, callbacks, etc.

If DAObj is already connected to the server when addgroup is called, a group name is requested
from the server. If the server does not supply a group name, or the object is not connected to a server,
a unique name is automatically assigned to GrpObj. The unique name follows the convention
"groupN' where N is an integer. You can change this name by modifying the group's Name property.

GrpObj = addgroup(DAObj,GName) adds a group to the OPC data access object DAObj with the
group name given by GName. The group name must be unique among other group names within
DAODbj.

GrpObj = addgroup(DAObj,GName,GrpType) adds a group to the opcda object DAObj with the
group type specified by GrpType, either 'private’ or 'public’.

You can add items to GrpObj using the additem function, if the group type is 'private’. For a

public group, the items are already defined, and are automatically created when you connect to the
public group using addgroup.

Examples

Create an OPC DA Client and Add Groups
Create an OPC DA client and add groups to it.

Create an opcda client.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
Create a group using a default group name.

grpl = addgroup(da);

Add another group, providing its name.

addgroup

grp2 = addgroup(da, 'AddgroupEx");

Input Arguments

DAObj — OPC DA client
OPC DA client object

OPC DA client , specified as an OPC DA client object. You create the client object with the opcda
function.

Example: DAObj = opcda()

GName — Group name
char | string

Group name, specified as a character vector or string. The group name must be unique within the
OPC DA client object.

Example: 'groupl’
Data Types: char | string

GrpType — Group type
‘private’ (default) | 'public’

Group type, specified as 'private' or 'public'.If GrpTypeis 'private’ (the default), the group
is configured to be private to DAObj, and no other client connected to the OPC server can access that
group. If GrpType is 'public’, a connection is made to the server’s public group named GName. To
make a connection to a public group named GName, that group must exist on the server as a public
group. You create public groups on the server using the makepublic function. Note that some
servers do not support public groups; you can verify whether a server supports public groups by
using opcserverinfo(DAObj) and checking the SupportedInterfaces field for the
IOPCServerPublicGroups interface.

Example: 'public’
Data Types: char | string

Output Arguments

GrpObj — Data access group
dagroup object

Data access group, returned as a dagroup object.

By default, GrpObj has its Active property set to 'on', GroupType set to 'private’, and the
Subscription property set to 'on’'.

See Also

Functions
additem | opcda | opcserverinfo

Introduced before R2006a

18-3

18 Functions

18-4

additem

Add data access items to dagroup object

Syntax

I0Obj = additem(GObj, 'IName')

I0Obj = additem(GObj, 'IName', 'DataType')

I0Obj = additem (GObj,'IName', 'DataType', 'Active')
Description

I0bj = additem(GObj, 'IName') adds items to the group object GObj with fully qualified item IDs
given by IName. The object I0bj is the created item object or objects. You specify IName as a single
item ID or as a cell array of item IDs.

The daitem object provides a connection to a data variable in the physical device and returns
information about the data variable, such as its value, quality, and time stamp. Note that you cannot
add a given item to the same group more than once. However, you can add the same item to different
groups.

By default, I0bj is active; that is, if the group’s Subscription property is on, the item's Value, Quality,
and TimeStamp properties will be updated at the group's UpdateRate.

Servers often require item IDs to be specified in the correct case. You can use the serveritems
function to find valid item IDs.

Note You cannot add items to a public group. A public group has a fixed set of item IDs common to
all clients sharing that group. The GroupType property of a dagroup object indicates the type of

group.

I0bj = additem(GObj,'IName', 'DataType') adds items to the group object GObj with the
requested data type given by 'DataType'. You specify 'DataType’ as a cell array of character
vectors, one for each item ID. 'DataType' is the data type in which the item's value will be stored in
the MATLAB workspace. The supported data types are 'logical', 'int8', 'uint8', 'intl6",
'uintl6', 'int32', 'uint32"', 'single’, 'double’, 'char’', and 'date’. Note that if the
requested data type is rejected by the server, the item is not added. The requested data type is stored
in the DataType property. The canonical data type (the data type used by the server to store the item
value) is stored in the CanonicalDataType property.

I0bj = additem (GObj,'IName', 'DataType', 'Active') adds items to the group object GObj

with active status given by 'Active'. You specify 'Active’ as a cell array of character vectors, one
for each item ID. 'Active' canbe 'on' or 'off'. The active status is stored in the Active property.

Examples

Create a client and a group.

additem

da = opcda('localhost', '"Matrikon.OPC.Simulation');
connect(da);

grp = addgroup(da, 'ExAddItem');

Add two items with their canonical data types.

itm = additem(grp, {'Random.Real4', 'Random.Real8'})
Add an item with a 'double' data type.

itmDbl = additem(grp, 'Random.Int2', 'double")

Add an inactive item.

itmInact = additem(grp, 'Random.UInt4', 'double', 'off")

See Also

Functions
getnamespace | serveritems

Introduced before R2006a

18-5

18 Functions

18-6

arrayHasSameTimeStamp

Class: opc.hda.Data
Package: opc.hda

True if all elements of OPC HDA data object have same time stamp vector

Syntax

tf = arrayHasSameTimeStamp(d0Obj)

Description

tf = arrayHasSameTimeStamp (dObj) returns true if all the elements of dObj have the same time
stamp.

Use tsunion to ensure that the time stamps of an OPC HDA data object are the same.

Examples

Load the OPC HDA example data file and see if the hdaDataSmall object has the same time stamps
in all elements:

load opcSampleHdaData;
tf = arrayHasSameTimeStamp(hdaDataSmall);

Form a new data set using tsunion, and check the time stamps again:
hdaUnion = tsunion(hdaDataSmall);
tfU = arrayHasSameTimeStamp(hdaUnion)

See Also
tsunion

browsenamespace

browsenamespace

Graphically browse OPC DA server name space

Syntax

ItmList = browsenamespace(DaObj)

ItmList = browsenamespace(DaObj,ItmListInit)
ItmList = browsenamespace(DaObj,ItmListInit,true)
Description

ItmList = browsenamespace(DaObj) opens a graphical name space browser for the OPC Data
Access Client object DaObj. The graphical interface lets you construct a list of items and return a list
of those fully qualified item IDs to ItmList. You can use ItmList to add items to a Group object
using additem. The name space is retrieved from the server incrementally, as needed.

ItmList = browsenamespace(DaObj,ItmListInit) lets you specify an initial list of item IDs to
augment.

ItmList = browsenamespace(DaObj,ItmListInit,true) loads the entire name space into the
dialog box.

Examples

Browse Local Matrikon Server for OPC DA Items

Connect to the local Matrikon Simulation server and browse for items.
DalObj = opcda('localhost', 'Matrikon.0PC.Simulation");

connect (DalObj);
ItmList = browsenamespace(DalObj);

Input Arguments

DaObj — OPC DA client
OPC DA client object

OPC DA client, specified as an OPC DA client object.

ItmListInit — Initial list of OPC DA items
character vector, string, or cell array

Initial list of OPC DA items, specified as a character vector, string, or cell array that identifies the
item IDs. When the browser opens, these items are already included in the selected list.

Data Types: char | string | cell

true — Indicator to load entire name space
true

18-7

18 Functions

Indicator to load the entire name space, specified as true. Use this option only if your server does
not support partial name space browsing.

Data Types: logical

Output Arguments

ItmList — List of OPC DA item IDs
char vector or cell array of char vectors

List of OPC DA item IDs, returned as a character vector or cell array of character vectors. Each
character vector indicates a selected OPC DA item ID.

See Also
addgroup | additem | getnamespace

Introduced in R2013a

18-8

browseNameSpace

browseNameSpace

Package: opc.hda

Graphically browse OPC HDA server name space

Syntax

ItmList = browseNameSpace(HdaObj)

ItmList = browseNameSpace(HdaObj,ItmListInit)
ItmList = browseNameSpace(HdaObj,ItmListInit,true)
Description

ItmList = browseNameSpace(HdaObj) opens a graphical name space browser for the OPC HDA
client object HdaObj. Use the graphical interface to construct a list of items and return a list of those
fully qualified item IDs in ItmList. Use ItmList to retrieve data for those items with function
readraw, readprocessed, readattime, or readmodified.

The name space is retrieved from the server incrementally, as needed.

ItmList = browseNameSpace(HdaObj,ItmListInit) lets you specify an initial list of item IDs
to be augmented.

ItmList = browseNameSpace(HdaObj,ItmListInit,true) loads the entire name space into
the dialog.

Examples

Browse Local Matrikon Server for OPC HDA Items

Connect to the local Matrikon Simulation server and browse for items.

HdaObj = opchda('localhost', '"Matrikon.OPC.Simulation');
connect (HdaObj);
ItmList = browseNameSpace(HdaObj);

Input Arguments

HdaObj — OPC HDA client
OPC HDA client object

OPC HDA client, specified as an OPC HDA client object.

ItmListInit — Initial list of OPC HDA items
character vector, string, or cell array of character vectors

Initial list of OPC HDA items, specified as a character vector, string, or cell array that identifies the
item IDs. When the browser opens, these items are already included in the selected list.

18-9

18 Functions

Data Types: char | string | cell

true — Indicator to load entire name space
true

Indicator to load the entire name space, specified as true. Use this option only if your server does
not support partial name space browsing.

Data Types: logical

Output Arguments

ItmList — List of OPC HDA item IDs
char vector or cell array of char vectors

List of OPC HDA item IDs, returned as a character vector or cell array of character vectors. Each
character vector indicates a selected OPC HDA item ID.

See Also

Functions
getNameSpace (opchda) | readattime | readmodified | readprocessed | readraw

Introduced in R2013a

18-10

browseNamespace

browseNamespace

Package: opc.ua

Graphically browse name space and select nodes from OPC UA server

Syntax

NodeList = browseNamespace(UaClient)
NodeList = browseNamespace(UaClient, Nodes)
Description

NodeList = browseNamespace(UaClient) opens the Browse Name Space dialog box for OPC UA
client object UaClient. Using this browser, you can construct a list of nodes, and return an array of
those nodes in NodelList. You can use NodelList to retrieve data for those items using read,
readHistory, readProcessed, readAtTime, or readModified.

The name space is retrieved from the server incrementally. UaClient must be connected when you
call this function.

NodeList = browseNamespace(UaClient,Nodes) allows you to specify an initial list of Nodes to
be supplemented. If you cancel the browsing by pressing the Cancel button, then NodeList will be
empty.

Examples

Create Initial List of Nodes

This example shows how to create a list of nodes from the OPC UA name space. After selecting the
nodes you want in the dialog box, click OK.

s = opcuaserverinfo('localhost');
UaClient = opcua(s);

connect (UaClient);

NodeListl = browseNamespace(UaClient)

Supplement List of Nodes

This example shows how to add to a list of nodes from the OPC UA name space. The Browse Name
Space dialog box opens with the nodes of NodeList1 already selected.

s = opcuaserverinfo('localhost');
UaClient = opcua(s);

connect (UaClient);

NodelListl = browseNamespace(UaClient)

18-11

18 Functions

% Some time later
NodelList2 = browseNamespace(UaClient,NodelListl)

Input Arguments

UaClient — OPC UA client
OPC UA client object

OPC UA client specified as an OPC UA client object

Nodes — List of nodes
array of node objects

List of nodes returned as an array of node objects. For information on node object functions and
properties, type

help opc.ua.Node

Output Arguments

NodeList — List of nodes
array of node objects

List of nodes returned as an array of node ohjects. For information on node object functions and
properties, type

help opc.ua.Node

See Also

Functions
getNamespace | readAtTime | readHistory | readProcessed | readValue | writeValue

Introduced in R2015b

18-12

cancelasync

cancelasync

Cancel asynchronous read and write operations

Syntax

cancelasync(GObj)
cancelasync(GObj,TransID)

Description

cancelasync(GObj) cancels all asynchronous read or write operations that are in progress for the
group object specified by GObj. Note that this function is asynchronous and does not block the
MATLAB command line.

After cancelasync cancels the in-progress asynchronous operations, the OPC server generates a
cancel async event. If you specify a callback function file for the CancelAsyncFcn property, the
callback function executes when this event occurs.

cancelasync(GObj,TransID) cancels the asynchronous operation(s), specified by the transaction
ID(s) given by TransID. You can cancel specific asynchronous requests using this syntax.

Examples

Create a connected client, group, and items:

da = opcda('localhost', 'Matrikon.OPC.Simulation');

connect(da);

grp = addgroup(da, 'CancelAsyncEx');

additem(grp, {'Random.Real8', 'Random.Real4'});

Request an asynchronous read operation and then immediately cancel that request:
tid = readasync(grp); cancelasync(grp, tid)

See Also
readasync | writeasync

Introduced before R2006a

18-13

18 Functions

cleareventiog

Clear event log, discarding all events

Syntax

cleareventlog(DAObj)

Description

cleareventlog(DAObj) clears the event log for opcda object DAObj. DAObj can be an array of
objects. cleareventlog also discards any events stored in the EventLog property of the objects.

Examples

Create a connected client and configure a group with two items:

da = opcda('localhost', '"Matrikon.OPC.Simulation');
connect(da);

grp = addgroup(da, 'ClearEventLogEx");

itml additem(grp, 'Random.Real8"');

itm2 additem(grp, 'Triangle Waves.UIntl');

Run a 10-second logging task, and after 5 seconds perform an asynchronous read of the group:
grp.UpdateRate = 1;

grp.RecordsToAcquire = 10;

start(grp);

pause(5);

tid = readasync(grp);

wait(grp);

Examine the event log size:

el = da.EventLog

Clear the event log:

cleareventlog(da)
el2 = da.EventLog

Introduced before R2006a

18-14

clonegroup

clonegroup

Clone group into new private group on same client

Syntax

NewGObj = clonegroup(GObj, 'NewName')

Description

NewGObj = clonegroup(GObj, 'NewName') clones the dagroup object specified by GObj, making
a private group NewGObj with name NewName. NewName must be a unique group name. GObj can be
a private group or a public group.

The new group NewGObj is independent of the original group, but with the same parent (opcda
object) and the same items as that group. All the group and item properties are duplicated with the
exception of the following:

* The Active property is configured to 'off"'.

* The GroupType property is configured to 'private’.

Not all OPC data access servers support the cloning of groups. To use this functionality, your server
must support public groups. If you try to clone a group on a server that does not support public
groups, an error is generated. To verify that a server supports public groups, use the

opcserverinfo function on the client connected to that server: Look for an entry
"IOPCPublicGroups' in the 'SupportedInterfaces' field.

You use clonegroup primarily when you want to create a private duplicate of a public group that
you can then modify. If you want to create a copy of a group in another client, use the copyobj
function.

Examples

Create a fictitious client, and configure a group with two items. Do not connect to the server.

da = opcda('localhost', 'Dummy.Server');

grpl = addgroup(da, 'OriginalGroup');
itml = additem(grpl, 'Devicel.Iteml');
itm2 = additem(grpl, 'Devicel.Item2');

Clone the group.

grp2 = clonegroup(grpl, 'ClonedGroup');

See Also

Functions
copyobj | makepublic

Introduced before R2006a

18-15

18 Functions

18-16

connect

Package:

Connect OPC Toolbox client to server

Syntax

connect (0bj)

Description

connect (0bj) connects the opcda or opchda object Obj to the OPC server that specified by the
object Host and ServerID properties. When you connect Obj, its Status property takes the value
"connected'. You can disconnect Obj from the server with the disconnect function, which sets
the Status property value to 'disconnected’.

If Obj is an array of objects and the function cannot connect some of these objects, it generates a
warning. If the function cannot connect any of the objects, it generates an error.

It is possible to create opcda groups and items before connecting to the server. However, servers
impose restrictions on client group and item names. Therefore, if you create a group hierarchy and
then connect to the server, connect automatically deletes groups or items that the server cannot
support, and issues a warning message.

Examples

Connect OPC DA Client to Sever

Create a Data Access client and connect to the server.

da = opcda('localhost', '"Matrikon.OPC.Simulation');
connect(da);

Connect OPC HDA Client to Server

Create an HDA client for the Matrikon Simulation Server and connect to the server.

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
connect (hdaObj);

Input Arguments

Obj — OPC client object
opcda object | opchda object

OPC client object, specified as an opcda object, opchda object, or an array of objects.

Example: opchda()

connect

See Also

Functions
disconnect | isConnected

Introduced before R2006a

18-17

18 Functions

18-18

connect

Package: opc.ua

Connect OPC UA client to server

Syntax

connect(UaClient)
connect(UaClient, UserName, Password)
connect(UaClient,PublicKeyFilename,PrivateKeyFileName,PrivateKeyPassword)

Description

connect(UaClient) connects the OPC UA client UaClient to its referenced server using
anonymous user authentication.

connect(UaClient, UserName, Password) connects the OPC UA Client UaClient to its server
using username and password authentication. The UserName and Password arguments must be
provided, although the Password field can be empty.

connect(UaClient,PublicKeyFilename,PrivateKeyFileName,PrivateKeyPassword)
connects the OPC UA Client UaClient to its server using the User Certificate stored in the public
and private key files referenced by PublicKeyFilename and PrivateKeyFilename.
PrivateKeyPassword is the password used to protect the Private Key File. Private Key Files for
OPC Toolbox must be password protected. The files must be in .DER format.

When the client successfully connects to the server, the client object Status property is set to
"Connected’, the first level of the server namespace is retrieved, and various essential properties of
the client are read from the server.

If UaClient is a vector of clients, and some but not all clients can connect, a warning is issued. If no
clients can connect, an error is generated. You can only connect a vector of clients using the same
username and password, or the same certificate parameters. If you need to use different usernames
and passwords for different servers, call connect on each of the clients individually.

Examples

Connect OPC UA Client to Server

Locate an OPC UA server and connect a client to it.
s = opcuaserverinfo('localhost');

UaClient = opcua(s(1));
connect(UaClient);

Check the connection status.

connect

isConnected(UaClient)

Input Arguments

UaClient — OPC UA client
OPC UA client object

OPC UA client, specified as an OPC UA client object or array of objects.

Example: opcua()

See Also

Functions
disconnnect | isConnected | opcua

Introduced in R2015b

18-19

18 Functions

18-20

copyobj
Make copy of OPC data access object

Syntax

NewObj
NewObj

copyobj (0bj)
copyobj (0bj, ParentObj)

Description

NewObj = copyobj(0bj) makes a copy of all the objects in Obj, and returns them in NewObj. Obj
can be a scalar OPC Toolbox object, or a vector of toolbox objects.

NewObj = copyobj(0bj, ParentObj) makes a copy of the objects in Obj inside the parent object
ParentObj. ParentObj must be a valid scalar parent object for Obj. If any objects in Obj cannot be
created in ParentObj, a warning will be generated.

A copied toolbox object contains new versions of all children, their children, and any parents that are
required to construct that object. A copied object is different from its parent object in the following
ways:

» The values of read-only properties will not be copied to the new object. For example, if an object is
saved with a Status property value of ' connected’, the object will be recreated with a Status
property value of 'disconnected' (the default value). You can use propinfo to determine if a
property is read-only. Specifically, a connected opcda object is copied in the disconnected state,
and a copy of a logging dagroup object is not reset to the logging state.

* A copied dagroup object that has records in memory from a logging session is copied without
those records.

OPC HDA objects do not support copyobj.

Examples

Create a connected Data Access client with a group containing an item:
dal = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(dal);

grpl = addgroup(dal, 'CopyobjEx");

itml = additem(grpl, 'Random.Real8');

Copy the client object. This also copies the group and item objects.

da2 = copyobj(dal);
grp2 = da2.Group

Change the first group name, and note that the second group name is unchanged:

grpl.Name = 'NewGroupName';
grp2.Name

copyobj

See Also
obj2mfile | propinfo

Introduced before R2006a

18-21

18 Functions

18-22

delete

Package:

Remove OPC Toolbox objects from memory

Syntax

delete(0bj)

Description

delete(0bj) removes the OPC Toolbox object Obj from memory. Obj can be an array of objects. A
deleted object becomes invalid and you cannot reconnect it to the server after it has been deleted, so
you should remove references to that object from the workspace with the clear command. Deleting
an object that contains children (groups or items) also deletes these children, so you should remove
references to these children.

If multiple references to a toolbox object exist in the workspace, then deleting one object invalidates
the remaining references.

If Obj is an opcda object connected to the server, delete disconnects and deletes the object.

Examples

Create an OPC HDA Client, delete the object, and clear the variable from the workspace:

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
delete(hdalbj);
clear hdaObj

Delete a group and its children from memory:

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);

grp = addgroup(da, 'DeleteEx');

itm = additem(grp, 'Random.Real4d');

r = read(grp)

delete(grp); % deletes itm as well

clear grp itm

See Also
clear | disconnect | isvalid | opc.hda.reset

Introduced before R2006a

disconnect

disconnect

Package:

Disconnect OPC Toolbox client from server

Syntax

disconnect(0bj)

Description

disconnect (0bj) disconnects the OPC Toolbox client object 0bj from the server. Obj can be an
array of objects.

If the disconnection from the server was successful, the function sets the Obj property Status value
to 'disconnected’. You can reconnect Obj to the server with the connect function.

If Obj is an array of objects and the function cannot disconnect some of the objects from the server, it
disconnects the remaining objects in the array and issues a warning. If the function can disconnect
none of the objects from their server, it generates an error.

Examples

Create an OPC data access client and connect to the server:
da = opcda('localhost', '"Matrikon.OPC.Simulation');
connect(da);

da.Status

Disconnect from the server:

disconnect(da);
da.Status

Create an OPC HDA client for the Matrikon Simulation Server and connect to the server:

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
connect (hda0Obj);

Check the status of the connection:
hdaObj.Status
And disconnect from the server:

disconnect(hdaObj);
hdaObj.Status

See Also
connect | isConnected | propinfo

18-23

18 Functions

Introduced before R2006a

18-24

disconnect

disconnect

Package: opc.ua

Disconnect OPC UA client from server

Syntax

disconnect(UaClient)

Description

disconnect(UaClient) disconnects the OPC UA client UaClient from its server, and sets the
client Status property to 'Disconnected’.

Examples

Disconnect an OPC UA client and view its connection status.
s = opcuaserverinfo('localhost');

UaClient = opcua(s);

connect (UaClient);

UaClient.Status

Connected

disconnect(UaClient);
UaClient.Status

Disconnected

See Also
connect | isConnected | opcua

Introduced in R2015b

18-25

18 Functions

18-26

disp

Summary of information for OPC Toolbox objects

Syntax

0bj
disp(0bj)

Description

Obj or disp(0bj) displays summary information for OPC Toolbox object Obj.

If Obj is an array of objects, disp outputs a table of summary information about the objects in the
array.

Summary information includes the following information as appropriate for each item in dObj.

ItemID: The item ID for that element.
Value: The number and data type of the values for that element.

Start TimeStamp: The time of the first value in the element. The time is displayed in the format
specified by the OPC date display format that can you set using opc.setDateDisplayFormat

End TimeStamp: The time of the last value in the element.

Quality: The number of unique qualities contained in the element. If all values have the same
quality, that HDA quality is displayed.

You can get more information about a OPC HDA data objects by using the showValues method.

Alternatively, you can display summary information for Obj by excluding the semicolon when:

Creating a toolbox object, using the opcda, addgroup, or additem functions
Configuring property values using dot notation

Examples

Display the summary of a data access client:

da
da

opcda('localhost', 'My.Server.l')

Summary of OPC Data Access Client Object: localhost/My.Server.1

Server Parameters

Host : localhost
ServerID : My.Server.l
Status : disconnected
Timeout : 10 seconds

Object Parameters

disp

Group : 0-by-1 dagroup object
Event Log : 0 of 1000 events

Display the summary information for an array of data access clients:

da2 = opcda('localhost', 'My.Second.Server.1');
[da da2]

OPC Data Access Object Array:

Index: Status: Name:
1 disconnected localhost/My.Server.1
2 disconnected localhost/My.Second.Server.1

Load the OPC HDA example data file and display the hdaDataSmall object:

load opcSampleHdaData;
disp(hdaDataSmall)

See Also
addgroup | additem | opcda | showValues

Introduced before R2006a

18-27

18 Functions

double

Package: opc.hda

Convert OPC HDA data object array to double matrix

Syntax

Vdouble = double(DObj)

Description

Vdouble = double(DObj) converts the OPC HDA data object array DObj into a matrix of data type
double.

DObj must have the same time stamps for each of the Item IDs (elements of DObj), otherwise an

error is generated. Use tsunion, tsintersect, or resample to generate an OPC HDA data object
containing the same time stamp for all items in the object.

Examples

Convert OPC HDA Data to Matrix of doubles

Load the OPC HDA example data file, convert the hdaDataSmall object to have the same time
stamps, and create a matrix of type double from the result.

load opcSampleHdaData;
dUnion = tsunion(hdaDataSmall);
Vdouble = double(dUnion);

Input Arguments

DObj — OPC HDA data
OPC HDA data object array

OPC HDA data, specified as an OPC HDA data object array.

Output Arguments

Vdouble — OPC HDA data values
matrix of double type

OPC HDA data values, returned as a matrix of double type. Vdoub'le is constructed as an M-by-N

matrix of double values, where M is the number of items in DObj and N is the number of time stamps
in the array.

18-28

double

See Also

Functions
resample | tsintersect | tsunion

Introduced in R2011a

18-29

18 Functions

18-30

exportClientCertificate
Package: opc

Copy OPC UA client application certificates to file

Syntax

fileName = opc.ua.exportClientCertificate

fileName = opc.ua.exportClientCertificate("SHA1")
fileName = opc.ua.exportClientCertificate("SHA256")

opc.ua.exportClientCertificate("SHAL1",FileName)
opc.ua.exportClientCertificate("SHA256",FileName)

Description

fileName = opc.ua.exportClientCertificate copies the OPC Toolbox SHA256 UA Client
Application Certificate to the file MATLAB OPCToolbox SHA256.der in the user folder. The full path
to the file is returned in fileName.

fileName = opc.ua.exportClientCertificate("SHA1") copies the OPC Toolbox SHA1 UA
Client Application Certificate to the file MATLAB_OPCToolbox SHAl.der in the user folder. Note
that SHA1 is considered insecure by the OPC Foundation, and this certificate should be used only for
backward compatibility. The full path to the file is returned in fileName.

fileName = opc.ua.exportClientCertificate("SHA256") copies the OPC Toolbox SHA256
UA Client Application Certificate to the file MATLAB OPCToolbox SHA256.der in the user folder.
The full path to the file is returned in fileName.

opc.ua.exportClientCertificate("SHA1",FileName) or
opc.ua.exportClientCertificate("SHA256",FileName) copies the corresponding OPC
Toolbox UA Client Application Certificate to the file given by FileName. If the full path to FileName
does not exist, the function attempts to create it. You can use the generated file to register the Client
Application Certificate with any servers that require trusted certificates. The Client Application
Certificate is exported in .der format.

Examples

Export Client Certificate

Export the SHA256 UA Client Application Certificate.
fName = opc.ua.exportClientCertificate("SHA256");

The generated file is named MATLAB_OPCToolbox_ SHA256.der in the folder identified in fName.

Input Arguments

FileName — Path to generated certificate file
string | char

exportClientCertificate

Full path to generated certificate file, specified as a string or character vector.
Example: "C:\st4\certfile.der"
Data Types: char | string

Output Arguments

fileName — File name of exported certificate
char

File name with full path to location of exported certificate file.

See Also

Functions
opcua | setSecurityModel

Topics
“OPC UA Security” on page 17-7
“OPC UA Certificate Management” on page 17-9

Introduced in R2020a

18-31

18 Functions

findDescription

Package: opc.hda

Locate OPC HDA servers with particular description

Syntax

ind = findDescription(SIObj, 'DescStr')

Description

ind = findDescription(SIObj, 'DescStr') returns the indices of the OPC HDA Serverlnfo
elements in SIObj, where the Description property starts with 'DescStr'.

Examples

Locate all servers on the local host, with the description starting '‘Matrikon"'.

si0bj = opchdaserverinfo('localhost');
ind = findDescription(siObj, 'Matrikon');
siMatrikon = siObj(ind)

See Also

Functions
opchdaserverinfo

18-32

findDescription

findDescription

Package: opc.ua

Find OPC UA servers containing specified description

Syntax

ServerList = findDescription(Servers,DescStr)

Description

ServerList = findDescription(Servers,DescStr) searches among Servers and returns
only those OPC UA servers whose Description property contains the character vector or string
DescStr.

Examples

Find all sample servers from the local host.

localServers = opcuaserverinfo('localhost');
sampleServers = findDescription(localServers, 'Sample')

sampleServers =
OPC UA ServerInfo 'UA Sample Server':

Connection Information
Hostname: 'HO0ST2241'

Port: 51210
See Also
Functions
opcuaserverinfo

Introduced in R2015b

18-33

18 Functions

18-34

findNodeByld

Package: opc.ua

Find OPC UA server nodes by namespace index and identifier

Syntax

FoundNode = findNodeById(NodelList,NsInd,Id)

Description

FoundNode = findNodeById(NodelList,NsInd,Id) searches the nodes in NodeList for a node
whose NamespaceIndex and Identifier properties match NsInd and Id, respectively. NsInd
must be an integer, and Id must be a character vector, string, or integer.

This function might query the server for further descendants (children) of NodeList.

Examples

Find the ServerCapabilities node (Index 0, Identifier 2268) of the OPC UA server on the
local host.

UaClient = opcua('localhost',51210);
connect(UaClient);
capabilitiesNode = findNodeById(UaClient.Namespace,0,2268)

capabilitiesNode =
OPC UA Node:

Node Information:
Name: 'ServerCapabilities'
Description: 'Describes capabilities supported by the server.
NamespaceIndex: 0
Identifier: 2268
NodeType: 'Object'’

Hierarchy Information:
Parent: Server
Children: 14

See Also

Functions
findNodeByName | opcua

Introduced in R2015b

findNodeByName

findNodeByName

Package: opc.ua

Find OPC UA server nodes by name

Syntax

FoundNodes = findNodeByName(NodelList,NodeName)

FoundNodes = findNodeByName(NodelList,NodeName, '-once')

FoundNodes = findNodeByName(NodelList,NodeName, '-partial')
FoundNodes = findNodeByName(NodelList,NodeName,'-once','-partial')
Description

FoundNodes = findNodeByName (NodelList,NodeName) searches the descendants of NodeList
for all nodes whose Name property matches NodeName. The search among all nodes, including
NodelList, is not case sensitive.

FoundNodes = findNodeByName(NodelList,NodeName, '-once') stops searching when one
node has been found.

FoundNodes = findNodeByName(NodelList,NodeName, '-partial') finds all nodes that start
with NodeName.

FoundNodes = findNodeByName(NodelList,NodeName,'-once','-partial') finds only the
first partial match.

This function might query the server for further descendants (children) of NodeList.

Examples

Find the ServerCapabilities node from the server node.

UaClient = opcua('localhost',51210);

connect(UaClient);

serverNode = findNodeByName(UaClient.Namespace, 'Server','-once');
capabilitiesNode = findNodeByName(serverNode, 'ServerCapabilities')

capabilitiesNode =
OPC UA Node:

Node Information:
Name: 'ServerCapabilities'
Description: 'Describes capabilities supported by the server.
NamespaceIndex: 0
Identifier: 2268
NodeType: 'Object'’

Hierarchy Information:

Parent: Server
Children: 14

18-35

18 Functions

18-36

See Also

Functions
findNodeById | opcua

Introduced in R2015b

flatnamespace

flathamespace

Flatten hierarchical OPC name space

Syntax

FNS = flatnamespace(NS)

Description

FNS = flatnamespace(NS) flattens the hierarchical name space NS, by recursively removing all
information in the Nodes fields of NS and placing that information into additional entries in the root
structure of FNS. You obtain a hierarchical name space using the 'hierarchical’ flag in
getnamespace.

Examples

Retrieve the name space for the Matrikon Simulation Server, and then flatten the name space:

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);

hierNS = getnamespace(da)
flatNS = flatnamespace(hierNS)
See Also

getnamespace | serveritems

Introduced before R2006a

18-37

18 Functions

flushdata

Remove all logged data records associated with dagroup object

Syntax
flushdata(GObj)

Description

flushdata(GObj) removes all records associated with the dagroup object GObj from the OPC
Toolbox engine, and sets RecordsAvailable to 0 for that object.

GObj can be a scalar dagroup object, or a vector of dagroup objects.

Examples

Create a connected client and configure a group with two items:
da = opcda('localhost', '"Matrikon.OPC.Simulation');
connect(da);

grp = addgroup(da, 'ClearEventLogEx"');
itml = additem(grp, 'Random.Real8"');

Acquire 10 records using a logging task:
grp.UpdateRate = 0.5;
grp.RecordsToAcquire = 10;
start(grp);

wait(grp);

Examine the records available:
recordCountl = grp.RecordsAvailable
Flush all data from the client:
flushdata(grp)

recordCount2 = grp.RecordsAvailable

See Also
getdata | peekdata | start | stop

Introduced before R2006a

18-38

genslread

genslread

Generate Simulink OPC Read block from MATLAB group object

Syntax

BlkPath
BlkPath

genslread(GrpObj)
genslread(Grp0Obj,DestSys)

Description

BlkPath = genslread(GrpObj) generates an OPC Read block from the dagroup object GrpObj,
and places the block in a new Simulink model. The OPC Read block has the same name, update rate,
and items as GrpObj. If all items in GrpObj have the same data type, the OPC Read block’s Value
port indicates that data type. BLkPath indicates the full path to the new OPC Read block.

BlkPath = genslread(GrpObj,DestSys) generates the OPC Read block and places it into the
system defined by DestSys. DestSys must be a model name or a path to a subsystem block. The
OPC Read block automatically takes a location that attempts to minimize overlap of lines and blocks,
however, the block might appear over an existing annotation.

Examples

Create a group object with two items, and then construct an OPC Read block from the group.

da = opcda('localhost', '"Matrikon.OPC.Simulation');
grp = addgroup(da, 'EXOPCREAD"');

itml = additem(grp, 'Triangle Waves.Real8');

itm2 additem(grp, 'Saw-Toothed Waves.Int2');

% Set update rate to 2 seconds:

grp.UpdateRate = 2;

% Construct OPC Read block:

blkPath = genslread(grp)

See Also

Functions
genslwrite

Introduced before R2006a

18-39

18 Functions

18-40

genslwrite

Generate Simulink OPC Write block from MATLAB group object

Syntax

BlkPath
BlkPath

genslwrite(GrpObj)
genslwrite(GrpObj,DestSys)

Description

BlkPath = genslwrite(GrpObj) generates an OPC Write block from the dagroup object
GrpObj, and places the block in a new Simulink model. The generated OPC Write block has the same
name, update rate, and items as Grp0Obj. BLkPath indicates the full path to the new OPC Write
block.

BlkPath = genslwrite(GrpObj,DestSys) generates the OPC Write block and places it into the
system defined by DestSys. DestSys must be a model name or a path to a subsystem block. The
OPC Write block automatically takes a location that attempts to minimize overlap of lines and blocks,
however, the block might appear over an existing annotation.

Examples

Create a group object with two items, and then construct an OPC Write block from the group.

da = opcda('localhost', '"Matrikon.OPC.Simulation');
grp = addgroup(da, 'EXOPCREAD');

itml = additem(grp, 'Triangle Waves.Real8');

itm2 additem(grp, 'Saw-Toothed Waves.Int2');

% Set update rate to 2 seconds:

grp.UpdateRate = 2;

% Construct OPC Write block:

blkPath = genslwrite(grp)

See Also

Functions
genslread

Introduced before R2006a

get

get

OPC Toolbox object properties

Syntax

Val = get(0bj, 'PropName')
get(0bj)
Val = get(0Obj)

Description

Val = get(Obj, 'PropName') returns the value Val of the property specified by the character
vector or string PropName, for the OPC Toolbox object 0bj.

If PropName is an array of property names, get returns a 1-by-N cell array of values, where N is the
length of PropName. If Obj is a vector of toolbox objects, Val is an M-by-N cell array of property
values where M is equal to the length of Obj and N is equal to the number of properties requested.

get(0bj) displays all property names and their current values for the toolbox object 0bj.

Val = get(0bj) returns a structure, Val, where each field name is the name of a property of Obj
containing the value of that property. If Obj is an array of toolbox objects, Val is an M-by-1 structure
array.

Examples

Obtain the values of the Status and Group properties of an opcda object, and then display all the
properties of the object:

da = opcda('localhost', 'Dummy.Server');
get(da, {'Status','Group'})

out = get(da, 'Status"')

get(da)

Tips

As an alternative to the get function, you can directly retrieve property values using dot-notation.
The following two lines achieve the same result.

t = get(dalObj, 'Timeout');
t = daObj.Timeout;

See Also

Functions

opchelp | propinfo | set

Introduced before R2006a

18-41

18 Functions

18-42

getAllChildren

Package: opc.ua

Recursively retrieve all children of OPC UA server node

Syntax

AllChildNodes = getAllChildren(StartNode)

Description

All1ChildNodes = getAllChildren(StartNode) returns all children of a given node as a vector
of Node objects, including all children recursively.

Note This function is memory intensive. Use it only when necessary. Alternatively, consider accessing
the Children property of the node, or searching with browseNamespace, findNodeByName, or
findNodeById.

Examples

This example shows how to return all children of the server node.

UaClient = opcua('localhost',51210);
connect(UaClient);

serverNode = UaClient.Namespace(1l);
allServerNodes = getAllChildren(serverNode);
whos allServerNodes

Name Size Bytes C(lass Attributes
allServerNodes 1x349 2896 opc.ua.Node
See Also

browseNamespace | findNodeById | findNodeByName | getNamespace

Introduced in R2015b

getDescription

getDescription

Package: opc.hda

Get description of OPC HDA aggregate type or item attribute

Syntax

DStr = getDescription(0bj,ID)
DStr = getDescription(0Obj,NameStr)

Description

DStr = getDescription(0Obj,ID) returns the description character vector associated with the
aggregate type or item attribute given by ID. If ID is a vector, DStr is a cell array of description
character vectors.

DStr = getDescription(0Obj,NameStr) returns the description character vector associated with
the aggregate type or item attribute given by the character vector or string NameStr. If NameStr is
an array, DStr is a cell array of description character vectors.

Examples

Get a description of all aggregate types provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
connect (hda0Obj);
allDesc = getDescription(hdaObj.Aggregates)

Get a description of all item attributes provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
connect (hdaObj);
allDesc = getDescription(hdaObj.ItemAttributes)

See Also

Functions
getIDFromName

18-43

18 Functions

18-44

getdata

Retrieve logged records from OPC Toolbox engine to MATLAB workspace

Syntax

S = getdata(GObj)

S = getdata(GObj,NRec)

TSCell = getdata(GObj,'timeseries')

TSCell = getdata(GObj, NRec, 'timeseries')
[ItmID,Val,Qual,TStamp,ETime] getdata(GObj, 'DataType')
[ItmID,Val,Qual,TStamp,ETime] getdata(GObj,NRec, 'DataType')

Description

S = getdata(GObj) returns the number of records specified in the RecordsToAcquire property
of dagroup object GObj, from the OPC Toolbox software engine. GObj must be a scalar dagroup
object.

S is an NRec-by-1 structure array, where NRec is the number of records returned. S contains the
fields 'LocalEventTime' and 'Items'. LocalEventTime is a date vector corresponding to the
local event time for that record. Items is an NItems-by-1 structure array containing the fields shown
below.

Field Name Description

ItemID The fully qualified tag name, as a character vector.

Value The data value. The data type is defined by the item's DataType property.

Quality The data quality, as a character vector. For a description, see “OPC Quality”
on page A-2.

TimeStamp The time the value was changed, as a date vector.

S = getdata(GObj,NRec) retrieves the first NRec records from the toolbox engine.

TSCell = getdata(GObj,'timeseries') and

TSCell = getdata(GObj, NRec, 'timeseries') assign the data received from the toolbox
engine to a cell array of time series objects. TSCell contains as many time series objects as there are
items in the group, with the name of each time series object set to the item ID. The quality value
stored in the time series object is offset from the quality value returned by the OPC server by 128.
The quality displayed by each is the same. Because each record logged might not contain information
for every item, the time series objects have only as many data points as there are records containing
information about that particular item ID.

[ItmID,Val,Qual,TStamp,ETime] getdata(GObj, 'DataType') and
[ItmID,Val,Qual,TStamp,ETime] getdata(GObj,NRec, 'DataType') assign the data
retrieved from the toolbox engine to separate arrays. Valid data types are 'double’, 'single’,
"int8', 'intl6"', 'int32"', 'uint8', 'uintl6’', 'uint32', 'logical’, 'currency’', 'date’,
and 'cell’.

ItmID is a 1-by-NItem cell array of item names.

getdata

Val is an NRec-by-NItem array of values with the data type specified. If a data type of 'cell'is
specified, then Val is a cell array containing data in the returned data type for each item. Otherwise,
Val is a numeric array of the specified data type.

Note 'DataType' must be set to 'cell' when retrieving records containing character vectors or
arrays of values.

Qual is an NRec-by-NItem array of quality character vectors for each value in Val.

TStamp is an NRec-by-NItem array of MATLAB date numbers representing the time when the
relevant value and quality were stored on the OPC server.

ETime is an NRec-by-1 array of MATLAB date numbers, corresponding to the local event time for
each record.

Each record logged may not contain information for every item returned, since data for that item may
not have changed from the previous update. When data is returned as a numeric matrix, the missing
item columns for that record are filled as follows.

Argument Behavior for Missing Items

Val The corresponding value entry is set to the previous value of that item, or to
NaN if there is no previous value.

Qual The corresponding quality entry is set to 'Repeat’.

TStamp The corresponding time stamp entry is set to the first valid time stamp for that
record.

getdata is a blocking function that returns execution control to the MATLAB workspace when one of
the following conditions is met:

* The requested number of records becomes available.

* The logging operation is automatically stopped by the engine. If fewer records are available than
the number requested, a warning is generated and all available records are returned.

* You issue Ctrl+C. The logging task does not stop, and no data is removed from the toolbox engine.

When getdata completes, the object's RecordsAvailable property is reduced by the number of
records returned by getdata.

Examples

Configure and start a logging task for 60 seconds of data.

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);

grp = addgroup(da, 'ExOPCREAD");

itml = additem(grp, 'Triangle Waves.Real8');

itm2 = additem(grp, 'Saw-Toothed Waves.Int2');
grp.LoggingMode = 'memory';

grp.RecordsToAcquire = 60;

start(grp);

Retrieve the first two records into a structure. This operation waits for at least two records.

18-45

18 Functions

s = getdata(grp,2)
Retrieve all the remaining data into a double array and plot it with a legend.

[itmID,val,qual,tStamp] = getdata(grp, 'double');
plot(tStamp(:,1),val(:,1),tStamp(:,2),val(:,2));
legend(itmID);

datetick x keeplimits

See Also

Functions
flushdata | peekdata | start | stop

Introduced before R2006a

18-46

getIDFromName

getiDFromName

Package: opc.hda

Translate OPC HDA aggregate type or item attribute name to numeric identifier

Syntax

ID = getIDFromName(Obj,NameStr)

Description

ID = getIDFromName(Obj,NameStr) returns the ID associated with the aggregate type or
attribute item name NameStr. If NameStr is an array, ID is a vector of IDs.

Examples

Retrieve the ID of the TIMEAVERAGE item attribute provided by the Matrikon Simulation Server.
hdaObj opchda('localhost', '"Matrikon.OPC.Simulation');

connect (hdaObj);
descID = getIDFromName(hdaObj.Aggregates, 'TIMEAVERAGE")

Retrieve the ID of the DESCRIPTION item attribute provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
connect (hdaObj);
descID = getIDFromName(hdaObj.ItemAttributes, 'DESCRIPTION")

See Also

Functions
getDescription | getNameList

18-47

18 Functions

18-48

getiDList

Package: opc.hda

Get all aggregate type or item attribute IDs

Syntax

ID = getIDList(0bj)

Description

ID = getIDList(0bj) returns all IDs stored in the OPC HDA aggregate type or item attribute
object Obj.

Examples

Retrieve the IDs of the aggregate types provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
connect (hdaObj);
allIDs = getIDList(hdaObj.Aggregates)

Retrieve the IDs of the item attributes provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
connect (hdaObj);
allIDs = getIDList(hdaObj.ItemAttributes)

See Also

Functions
getNamelList

getindexFromID

getindexFromlID

Package: opc.hda

Indices matching OPC HDA data item IDs

Syntax

ind = getIndexFromID(dObj,'itemID")
ind = getIndexFromID(d0Obj,idCell)
Description

ind = getIndexFromID(dObj,'itemID') returns the index of HDA data object array dObj that
matches the item ID 'itemID'.

ind = getIndexFromID(dObj,idCell) returns the indices of HDA data object array dObj that
match the item IDs contained in the cell array idCell. idCell must be a cell array of character
vectors.

Examples

Load the OPC HDA example data file and find the index of 'Item Example.Item.2':

load opcSampleHdaData;
ind = getIndexFromID(hdaDataVis, 'Example.Item.2');

18-49

18 Functions

18-50

getNamelList

Package: opc.hda

Get all aggregate type or item attribute names

Syntax

NameCell = getNamelList(0bj)

Description

NameCell = getNamelList(Obj) returns all names stored in the OPC HDA aggregate type or item
attribute object Obj. NameCell is a cell array of character vectors (even if Obj stores only one ID).

Examples

Retrieve the names of the aggregate types provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
connect (hdaObj);
allNames = getNameList(hdaObj.Aggregates)

Retrieve the names of the item attributes provided by the Matrikon Simulation Server.

hdaObj = opchda('localhost', 'Matrikon.OPC.Simulation');
connect (hdaObj);
allNames = getNamelList(hdaObj.ItemAttributes)

See Also
getIDFromName | getIDList

getnamespace

getnamespace

OPC DA server name space

Syntax

getnamespace (DAObj)

S
S getnamespace(DAObj, 'Filterl',Vall, 'Filter2',6val2, ...)

Description

S = getnamespace(DAObj) returns the entire name space of the server associated with the data
access (opcda) object specified by DAObj. S is a recursive structure array representing the name
space of the server. Each element of S is a node in the name space. S contains the fields:

* Name — a descriptive name

* FullyQualifiedID — the fully qualified ItemID of that node

* NodeType — defines the node as a 'branch' node (containing other nodes) or ' leaf' node
(containing no other nodes)

* Nodes — a structure array with the same fields as S, representing the nodes contained in this
branch of the name space.

Use flatnamespace to flatten the hierarchical name space.

S = getnamespace(DAObj, 'Filterl',Vall, 'Filter2',Val2, ...) allows you to filter the
retrieved name space based on a number of available browse filters. Available filters are described in
the table in Browse Filters on page 18-52.

Examples

Get Name Spaces
1 Get the entire name space for the Matrikon Simulation Server on the local host:

da = opcda('localhost', 'Matrikon.OPC.Simulation');
connect(da);
nsFull = getnamespace(da)

2 Get only the first level of the name space:

nsPart = getnamespace(da, 'Depth',1)
3 Add the nodes contained in the first branch of the name space to the existing structure:

nsPart(1l).Nodes = getnamespace(da,

'StartItemID', nsPart(1l).FullyQualifiedID,
'Depth',1);

18-51

18 Functions

18-52

Browse Filters

BrowseFilter

Description

'StartItemID'

Specify the FullyQualifiedID of a branch node, as a character vector or
string. Only nodes contained in that branch node will be returned. Some
OPC servers do not support partial name space retrieval based on this
option: An error is generated if you attempt to use the 'StartItemID'
browse filter on such a server.

'Depth

Specify the depth of the name space that you want returned. A 'Depth'
value of 1 returns only the nodes contained in the starting position. A
'Depth' value of 2 returns the nodes contained in the starting position
and all of their nodes. A 'Depth' value of Inf returns all nodes. When
combined with the 'StartItemID' filter, the 'Depth’ filter provides a
useful way to investigate a name server hierarchy one layer at a time.

"AccessRights'

Restricts the search to leaf nodes with particular access right
characteristics. Specify ' read' to return nodes that include the read
access right, and 'write' to return nodes that include the write access
right. An empty character vector (' ') returns nodes with any access rights.
Note that branch nodes will still be returned in the name space, in order to
contain the leaf nodes that have the requested access rights.

‘DataType’

Restricts the search to nodes with a particular canonical data type. Valid
data types are 'double’', 'single’', 'int8', 'intl6', 'int32"',
'uint8', 'uintl6', 'uint32', 'logical’, 'currency', and 'date’.
Use the 'DataType' filter to find server items with a specific data type,
such as 'double’ or 'date'. Note that branch nodes will still be returned
in the name space, in order to contain the leaf nodes that have the
required data type.

See Also

Functions

additem | flatnamespace | serveritems

Introduced before R2006a

getNameSpace

getNameSpace

Package: opc.hda

OPC HDA server name space

Syntax

NS = getNameSpace(HdaObj)

NS = getNameSpace(HdaObj, 'StartItemID', 'itemID"')

NS = getNameSpace(HdaObj, 'Depth',dLevel)

NS = getNameSpace(HdaObj, 'StartItemID', 'itemID', 'Depth',dLevel)
Description

NS = getNameSpace(HdaObj) retrieves the entire server name space from the connected OPC
HDA Client HdaObj.

NS = getNameSpace(HdaObj, 'StartItemID', 'itemID') retrieves the server name space
beginning at Fully Qualified Item ID 'itemID', and all branches in the name space below 'itemID".

NS = getNameSpace(HdaObj, 'Depth',dLevel) retrieves the dLevel levels of the server name
space beginning at the server name space root. Specifying dLevel as 1 retrieves only the nodes
(branch and leaf) contained in the root of the server name space.

NS = getNameSpace(HdaObj, 'StartItemID', 'itemID', 'Depth',dLevel) retrieves the
dLevel levels of the name space starting at Fully Qualified Item ID 'itemID'.

In all cases, NS is a recursive structure array representing the name space of the server. Each
element of NS is a node in the name space. NS contains the fields:

* Name — a descriptive name

* FullyQualifiedID — the fully qualified ItemID of that node

* NodeType — defines the node as a 'branch' node (containing other nodes) or ' leaf' node
(containing no other nodes)

* Nodes — a structure array with the same fields as NS, representing the nodes contained in this
branch of the name space

Use flatnamespace to flatten the hierarchical name space.

Examples

Get Name Spaces

1 Get the entire name space for the Matrikon Simulation Server on the local host:

hdaObj = opchda('localhost', '"Matrikon.OPC.Simulation');
connect (hdaObj);
nsFull = getNameSpace(hdaObj)

2 Get only the first level of the name space:

18-53

18 Functions

nsPart = getNameSpace(hdaObj, 'Depth',1)
3 Add the nodes contained in the first branch of the name space to the existing structure:

nsPart(1l).Nodes = getNameSpace(hdaObj, ...
'StartItemID',nsPart(1l).FullyQualifiedID, ...
'Depth',1);

See Also

Functions
connect

Introduced in R2011a